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ABSTRACT

I approximate the inverse Hessian (L'L)~*, where L is a Born modeling operator and
L’ is the corresponding adjoint RTM operator, with non-stationary matching filters.
These non-stationary filters can be seen as a low-rank approximation of the true inverse
Hessian. For 3D least-squares imaging, I use these matching filters to precondition the
inversion of prestack seismic data and observe a significant convergence speed-up.
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1 INTRODUCTION

Assuming that the background velocity model is accurate
enough, least-squares imaging improves the resolution of seis-
mic images (deconvolution effect), the illumination of deep
reflectors, and the amplitude fidelity (Kuhl and Sacchi, 2003;
Clapp, 2005). In addition, migration artifacts due to the ac-
quisition geometry are reduced (Nemeth et al., 1999). With
two-way operators, back-scattering noise is also attenuated.
However, these important features come at an increased cost,
especially in 3D, where many iterations involving computer-
intensive migration and demigration steps are needed to best
fit the recorded prestack data.

Because least-squares imaging is expensive, many cost-
saving strategies are possible if we recognize that the bene-
fits of least-squares inversion comes from the effects of the
inverse Hessian operator on the migrated images. Acknowl-
edging this fact, we can either try to approximate the inverse
Hessian without running any inversion (Rickett, 2003; Guit-
ton, 2004), speed-up the inversion by designing precondition-
ing operators (Aoki and Schuster, 2009; Hou and Symes, 2015,
2016), decrease the size of the problem using a target-oriented
solution (Tang, 2009), or design pseudo-unitary migration op-
erators (Zhang et al., 2014).

My goal in this paper is to speed-up the inversion by de-
signing a preconditioning operator based on the computation
of matching filters. These filters operate in the model space,
are non-stationary (vary in X,y and z directions), and approxi-
mate the effects of the inverse Hessian. Estimating these filters
is straightforward and is explained in details in Guitton (2004).
The novelty here is that I am using these filters to precondi-
tion the inversion for 3D least-squares reverse-time migration
(LSRTM). On a synthetic 3D data example, [ am showing a
significant speed-up where three to four iterations of the pre-

conditioned inversion yields significantly better results than
fifteen iterations of a non-preconditioned one. On a 3D field
data example, the cost saving is about a factor two: with 3D
data, these are important cost reduction numbers. Compared
to other preconditioning techniques such as those using de-
blurring filters (Aoki and Schuster, 2009), or approximate in-
verses (Hou and Symes, 2015), matching filters are simple to
implement, robust and easily generalizable to more compli-
cated imaging operators (e.g., elastic, anisotropic, etc...).

In the first part of this paper, I introduce the methodolo-
gies for the filter estimation and preconditioning parts. In the
second section, I illustrate the proposed methodology on a 3D
synthetic example and prove that preconditioning with match-
ing filters increases convergence speed. Finally, I apply this
methodology to an OBC dataset from the North Sea.

2 THEORY

This section describes the estimation of the non-stationary fil-
ters first, and then how these filters can be used to precondi-
tion LSRTM. In this paper, a migrated image corresponds to
an acoustic velocity perturbation m according to the following
decomposition of the velocity model my:

m¢ = myp + m M

where my, is the background velocity (i.e., migration veloc-
ity). Throughout this paper, I call abusively m a reflectivity
model as well because migrations are usually interpreted that
way.
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2.1 Filter estimation

In a first step, we need to estimate the non-stationary matching
filters. I will first describe how we can compute them and will
give some implementation details that help reducing the non-
stationary convolution footprint on the processed images.

Let’s define L as a Born modeling operator using a two-
way scalar wave equation (velocity only) and L as its adjoint
(i.e., reverse time migration operator). First, I estimate a mi-
grated image m, with RTM using the input data d:

m; =L'd 2)

From mj, I compute a second image mz going through a full
loop of demigration/migration steps as follows:

mgz = L'Lm; 3)

Therefore, ma is the result of the migration of the remodeled
data. Having the two migration results m; and mg, I estimate
a bank of non-stationary filters a minimizing

f(a) = |[Mza — mu |3 )

where M is the operator representation of the non-stationary
convolution with the remigrated image ms2 (see implementa-
tion details later in the text.) The least-squares solution & is
given by the normal equations

a=(M,Mz) 'Mjsm; (5)

showing that the filters are obtained by the correlation of the
two migrated images divided by the autocorrelation of m2. In
practice, a conjugate-direction solver (Claerbout and Fomel,
2014) is used to estimate the filter coefficients. Now, from
equation (3), we have

mp = (L'L)71m2 (6)
and from equation (4)
mi ~ Mzé (7)

which shows that the estimated filters & approximate the in-
verse Hessian (L’L)™'. In other words we have:

(M5Ma2) "M,M; ~ (L'L)™! ®)

with M the operator representation of the non-stationary
convolution with the migrated image mj . Using the definition
of m2 we end-up with

(M{L'LL'LM;)"'M{L'LM; =~ (L'L)™" (9

as well. These filters can be seen as low rank approximations
of the Hessian. In equation (9) we can see the influence of m
in the approximation of the inverse Hessian: it appears twice in
the numerator and denominator. I illustrated in Guitton (2004)
how these filters can efficiently approximate the inverse Hes-
sian for a 2D, one-way source-receiver migration operator. Re-
cently, a similar data-space approach has been proposed by
Khalil et al. (2016) and Wang et al. (2016). However, their
method approximates LL’ and can’t be directly used for the
inversion of over-determined systems. In addition, the match-
ing can be quite expensive to do in the data space. Finally, with

field data acquired on an irregular grid, interpolation might be
needed before the filter-estimation step.

I present in the next sections some implementation details
that improve the convergence of the filter estimation step.

2.2 Non-stationary filtering without edges

I now give some implementation details that improve con-
vergence during the filter estimation step and decrease arti-
facts. The non-stationary convolution involved in equation (4)
is quite expensive in 3D and in practice, a filter is kept con-
stant within a small cube, or patch. A code to compute the non-
stationary convolution operator, where the adjoint becomes the
filter estimation step is:

do iy = 1, size(y)
ip = aa%pch(iy)
lag => aa%hlx(ip)%lag
do ia = 1, size(lag)
ix = iy - lag(ia)
if (adj) then
a(ia,ip)=a(ia,ip)+ty(iy) »x (ix)
else
y(ly)=y(iy)+a(ia, ip) *x (ix)
end if
end do
end do

In the code above, y is the non-stationary convolution out-
put (output of forward operator), x the operator and a the un-
known filter coefficients (output of adjoint operator) and ip is
the patch index number. For one filter per output point, the in-
dex ip goes from 1 to size (y) . For one filter for the whole
dataset, the index ip is constant and we end up with a more
familiar stationary convolution. There are more details in this
code involving Helical boundary conditions. I refer the reader
to Claerbout and Fomel (2014) for a more complete descrip-
tion.

One issue with this implementation of the non-stationary
convolution is that we end up with one filter per patch in the
output vector space y. In other words, a filter is only applied to
a patch in the output space. Doing so, because filters are differ-
ent from patch to patch, we might see the patching’s footprint
in y (artifacts). Another consequence is that convergence to
estimate a will slow down because the inversion has to fight
against these artifacts that contaminate the residual. If we are
expecting abrupt changes in the output space, then the code
for non-stationary filtering above would be fine. For migrated
images, where more smoothness is desired, a different imple-
mentation of the non-stationary convolution is needed.

There are two ways to correct for this. One is to add
a regularization term in the filter estimation step to penalize
strong variations between neighboring filters. This has also the
advantage of helping the inversion which becomes massively
under-determined with so many coefficients to estimate in the
non-stationary case; however, this increases the cost of each
iteration as well. Another way is to modify the inner part of



the convolution above so that instead of having one filter per
output patch in y we have one filter per input patch in x:

if (adj) then
a(ia,ip)=a(ia,ip)+y(ix) *x(iy)
else
y(ix)=y (ix)+a(ia, ip)*x(iy)
end if

What I have done here is quite simple: for the forward and ad-
joint operations, I merely swapped the indexes iy and ix and
kept everything else the same (remember that y and x have
the same size). Now, we have a filter constant in a patch in the
input space. In other words, I transposed the non-stationary
operator. It turns out that this simple change of variable at-
tenuates the patching artifacts and improves convergence for
the filter estimation step. If you do this, you have to make sure
that your other codes using these filters are consistent with this
convention. The reader is encouraged to read Margrave (1998)
for a detailed discussion of these two implementations of non-
stationary filtering.

2.3 Preconditioned inversion

Now that I have estimated the non-stationary filters &, I can use
them to precondition the least-squares inversion. In a nutshell,
using a conjugate-direction solver, the non-preconditioned in-
version works as shown in Algorithm 1, where d is the data
vector, rd the data residual, x the model vector (to be esti-
mated), L the linear operator (L’ being its adjoint), and cg ()
computes an update for rd and x. For the preconditioned case,
we end up with Algorithm 2 where A is the operator represen-
tation of the non-stationary convolution with &.

Algorithm 1 Simple Solver
I: rq+ Lx—d

2: for iter do

3 g L'rg

4: gg + Lg

5

6

: end for

Algorithm 2 Preconditioned Solver
raq+ Lx—-d
2: for iter do
g AL/I‘d
4: gg + Lg
(rd’ X) «— Cg(rd7 X8, gg)
6: end for

The implementation in Algorithm 2 is similar to the
weighted CG algorithm of Hou and Symes (2016) where the
non-stationary convolution is used in the definition of the
model-space inner product. Note that the updating step cg ()
in both algorithms only involves inner products in the data
space and are not directly affected by A. The preconditioned
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Figure 1. Source (blue) and receiver positions (red) for the OBC
dataset

algorithm converges if A is positive definite. By testing this
condition at each iteration (i.e., z’ Az > 0 for any z) , I came
to conclude that A always is.

In the next section, I present LSRTM results for 3D syn-
thetic and field data examples with and without precondition-
ing and show that the matching filters improve the convergence
of the inversion significantly.

3 A 3D SYNTHETIC DATA EXAMPLE

For this 3D synthetic example, I use a subset of the 3D SEAM
model for the reflectivity and velocity models and opt for an
OBC-style acquisition geometry. The shot/receiver geometry
is similar to the one used in the 3D field OBC example that
I will show in the next section and is displayed in Figure 1.
In this experiment, I have twelve parallel receiver lines every
400 m. at a depth of around 90 m. In the field, the acquisi-
tion is done for one cable-pair at a time, where the shots are
covering a 12 km by 2.4 km rectangle above the two receiver-
line positions before the cables are moved by 800 m. For
this experiment, I model and migrate 288 3D receiver gathers,
with around 4200 traces (shot positions) per gather. I generate
Born-modeled data using the velocity and perturbation mod-
els of Figures 2(a) and 2(b), respectively. There is a salt-body
on the right side of the model. The maximum frequency of the
data is 20 Hz. I estimate the reflectivity model in two steps.
First, I apply a first-order vertical derivative to the velocity
model to obtain a high-wavenumber reflectivity model. Then,
I smooth the high-wavenumber model to obtain Figure 2(b). I
use this last model as the true perturbation model to generate
the synthetic Born-modeled data, while Figure 2(a) constitutes
the background velocity field. Therefore the goal of LSRTM is
to recover an image as close as possible to Figure 2(b). Now,
I describe the different stages of the approximate inverse Hes-
sian computation.



4  A. Guitton

Velocity Reflectivity
5 5
O+ O+
0+ [Toky!
o< o<
£ * £ -
= m o [aa]
>
Q2+ Qa2+
3.4 3.4
o o
£ o £ :
N N N E\)
< <
T T T T T T T T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 18 1 2 3 4 5 6 0 2 4 6 8 10 1® 1 2 3 4 5 6
x (km) y (km) x (km) y (km)
(a) (b)
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Figure 3. RTM images (a) m; = L’d and (b) m2 = L’Lm; needed to estimate the filters. Note the amplitude decrease in the deepest parts of

my compared with my.

3.1 Computing m; and m»

The first step consists in computing a migrated image m1
shown in Figure 3(a) and a re-migrated image m2 = L'Lm;,
shown in Figure 3(b). Because the Born-modeling operator L
is not unitary, the re-migrated image my is significantly dif-
ferent from m; with much lower amplitudes in the deepest
parts of the model. This decrease of amplitudes is also visible
comparing the true reflectivity model in Figure 2(b) and the
migrated image m; in Figure 3(a): the matching filters will
compensate for these discrepancies. Also, note that the RTM
images were processed to remove the back-scattering noise re-
sulting from the sharp velocity contrast where salt is present.

This processing step is necessary to focus the filter estimation
on the reflectors only.

3.2 Computing the 3D matching filters

The second step consists in estimating 3D matching filters to
minimize the objective function in equation (4). I estimate 3D
filters of dimensions 15x15x15 which, admittedly, might be
too many coefficients given that one of the main impact of the
inverse Hessian on the migrated images is an amplitude bal-
ancing effect. I keep these filters constant within a patch of
5x5xS samples, thus minimizing the numbers of filter coeffi-
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Figure 4. Residual m1 — M a after 400 iterations. The difference is
very small proving that the filters are approximating the inverse Hes-
sian well.
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Figure 5. Impulse responses at few locations of the model. Overall
and as expected, the filter coefficients get stronger with depth.

cients to estimate. The number of patches is 40 in the z di-
rection, 100 in x, and 50 in y, for a total of 675 x 10° filter
coefficients to estimate. Because the filters are constant within
a patch in the input space and not in the output space, no reg-
ularization across filters is applied.

I iterate 400 times, which yields a small residual (Figure
4). I show in Figure 5 a subset of the non-stationary filters
applied to equally spaced spikes (i.e., impulse responses). One
of the first striking feature is the increase of amplitude with
depth, as expected. We can also notice that the filters conform
to the geology.

Having these filters, it is easy to compute an improved
RTM image that, hopefully, will look closer to the true reflec-
tivity function in Figure 2(b). I show in Figure 6 such a result.
Comparing with Figure 3(a), we see the amplitude-balancing
effect of the filters. Comparing with Figure 2(b), i.e. the true
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Figure 6. Improved migration a * mj. The clip value of Figure 2(b)
is used here for display so that both images are directly comparable.
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Figure 7. Comparison between the “observed” data (estimated from
the true models in Figures 2(a) and 2(b)), modeled data (estimated
from the improved RTM result of Figure 6), and data residual (bottom)
for one receiver gather.

reflectivity model, we notice that the filters indeed help recov-
ering it very well. To better assess the quality of the inverse
Hessian approximation, I model data from Figure 6 and com-
pare them in Figure 7 with the “observed data” derived from
the models in Figures 2(a) and 2(b). The non-stationary fil-
ters help recovering most of the initial reflectivity: the differ-
ence between the observed and modeled data is indeed small.
Having a good approximation of (L’L)™*, I show in the next
section how the filters help speeding-up LSRTM.

3.3 3D LSRTM Inversion

Now, I am using these filters to improve the convergence of
LSRTM. With LSRTM, given some prestack data d, we mini-
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LSRTM — 15 iterations
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Figure 8. LSRTM result after 15 iterations. The amplitudes are match-
ing those of the true model in Figure 2(b) well, except in the deepest
parts where the amplitudes are still too weak. Compare also with the
simple filtering result of Figure 6.

mize
g(m) = |[Lm —d|3 (10)

where L is the acoustic Born modeling operator of equation
(2) and m the reflectivity model to be estimated. The ad-
joint L is the RTM operator without model extensions and/or
anisotropy. But first, I run fifteen iterations of LSRTM with-
out any preconditioning (Algorithm 1). The final image, using
the same clip values as in Figure 2(b), is shown in Figure 8.
For the inversion, I scale the gradient at each iteration by the
receiver illumination map. In addition, back scattering noise
is attenuated applying a mild high-pass filter. In equation, the
gradient is computed as follows:

Vg(m) = WBL'rq, (11)

where rq is the data-space residual, B is the bandpass oper-
ator, and W is the illumination-compensation operator (di-
agonal). The amplitude fidelity is improved after inversion.
Comparing with the filtering result of Figure 6, I notice that
the deepest parts of the model (z > 2km) are still lack-
ing strength: more iterations and/or a better illumination-
compensation scheme (e.g., incorporating the source illumina-
tion as well) would help. However, LSRTM is able to extend
the image on the edges of the model better than the simple
filtering approach. I show in Figure 9 a comparison between
a shot and the corresponding residual after 15 iterations. Ex-
cept for the salt events, visible as strong diffractions, and for
the latest arrivals, corresponding to the not-so-well recovered
deep events, the matching is pretty good.

Then, I use the filters estimated in the previous section
to precondition the inversion as explained in Algorithm 2. At
each iteration, I run a simple test to verify that A (i.e., the con-
volution with the matching filters) is positive definite by mak-
ing sure that (L'rq)’ A(L'rq) > 0. In essence, I make sure
that the gradient vector is still pointing at a descent direction.

Receiver X=7.6 Km — Y=2.8 Km — Z=84 m

o

Input

Residual

T T T T
0 400 800 1200 1600
Trace number

Figure 9. Comparison between the input data (top) and the residual
after 15 iterations of LSRTM.
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Figure 10. Preconditioned LSRTM with non-stationary 3D matching
filters: the amplitude fidelity is improved with far fewer iterations.

Now, the gradient is computed as follows :
Vg(m) = ABL'rq, (12)

which is very similar to equation (11) where W is replaced
by the non-stationary convolution operator A. I show the in-
version results after 5 iterations in Figure 10. The estimated
reflectivity looks very close to the true model in Figure 2(b):
notice how similar the clipped values are. Because the ampli-
tudes are so weak on the edges in m; and m2 (and thus not
well covered by our filters, as seen in Figure 5), the precondi-
tioned inversion doesn’t do as well as the standard LSRTM in
these areas. However, after two or three iterations of precon-
ditioned LSRTM, I could switch to LSRTM to recover them
(a strategy I use with the field data example in the next sec-
tion). Finally, I show in Figure 11 convergence plots for the
two methods: the preconditioned inversion converges in basi-
cally two to three iterations. Notice how the objective function
for the standard LSRTM has a lower value than the precondi-
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Figure 11. Evolution of the objective function g(m) with iterations
for (red) the preconditioned inversion and (blue) standard LSRTM.

tioned one at late iterations. These small differences stem from
the edges of the model where the standard LSRTM performs
better. Where it matters, i.e. in the middle of the model, the
preconditioned inversion outperforms standard LSRTM.

In the next section, I apply the preconditioned LSRTM
method to a North-Sea OBC dataset from the Volve field (Szy-
dlik et al., 2007).

4 A 3D OBC FIELD DATA EXAMPLE FROM THE
NORTH SEA

Now, I apply 3D LSRTM with and without preconditioning to
afield dataset from the North Sea shot over the Volve field. The
acquisition geometry is similar to the one used in the synthetic
example. The maximum frequency of the data is again 20 Hz.
This area has a relatively strong anisotropy and J, ¢ models
are available, but I don’t include them in my computations.
The velocity model in Figure 14(a) shows the top and base
chalk layer very well between z=2.5 km and z=4 km: its proper
delineation is one of the main target of the imaging process.

I display some observed traces for one receiver gather in
two figures. For t<2 s., Figure 12 shows the early arrivals. For
t>2 s. Figure 13 shows the late arrivals. In both figures, the top
row corresponds to the observed data, while the second and
third rows correspond to the residuals after LSRTM with and
without preconditioning, respectively. In the observed data,
there are strong amplitudes at early times due to source ef-
fects: quasi-mono-frequency events with water velocities are
present everywhere and seem to over-shadow reflections. At
later times, remaining slow converted waves are visible. I show
in Figure 13 the top and base chalk reflections.

First, I compute the RTM image shown in Figure 14(b):
the top panel shows an interesting depth-slice at 1.225 km
where channel structures are present. We notice weak reflec-
tions in the deepest parts of the model below the chalk and
strong migration artifacts on the edges of the image (as seen
in the corner of the depth slice). Then, I run 15 iterations of
LSRTM and display the final image in Figure 14(c). The first
thing to notice are the stronger reflectors below the chalk layer.
Then we also see the more balanced amplitudes in the depth
slice and the attenuation of the migration artifacts on the edges.
Although not easily noticeable, the resolution of the reflectors
above chalk has increased a lot: a strong black reflector above
the chalk layer at z=~2 km appears.
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Figure 16. Evolution of the objective function g(m) with iterations
for (blue) the preconditioned inversion, (red) standard LSRTM with-
out preconditioning, and ( ) LSRTM without preconditioning us-
ing Figure 15(a) as a starting guess.

Next, after estimating 3D matching filters from the mi-
gration result of Figure 14(b) and the re-migrated image
(not shown here), I run only two iterations of preconditioned
LSRTM. Note that due to weak reflections in the deepest parts
of the model, the size of each filter is now 21x21x21 (see the
Discussion section for more details.) It turns out that after only
two iterations, the residual stops decreasing, not improving the
image further. The result is shown in Figure 15(a). We notice
most of the beneficial aspects of LSRTM with only two iter-
ations (i.e. decreasing artifacts, improved illumination). How-
ever, looking in more details, we don’t see a significant im-
provement in resolution: I will try to explain this later. Over-
all on this example, I estimate that we get about 85% of the
LSRTM benefits for 15% of the cost. Comparing the residu-
als for both LSRTM with 15 iterations without precondition-
ing and LSRTM with 2 iterations with preconditioning for
one receiver gather, we notice that the data fit is slightly bet-
ter with the LSRTM without preconditioning at early times
(Figures12), while the preconditioning result is slightly better
at later times (Figure 13). This difference is due to the strong
amplitude correction of the filters early on in the deepest parts
of the model.

Finally, to get all the benefits of LSRTM, I use the result
of Figure 15(a) as the starting model for five more iterations
without preconditioning of LSRTM. I show the final model
in Figure 15(b). Now, this last result is much closer to Figure
14(c) for half the computing cost. The arrow labeled “1” in
Figure 15(b) shows a reflector that was not visible with pre-
conditioning only in Figure 15(a). Arrow “2” also shows in
a depth-slice the reduction in artifacts and improved illumina-
tion. Figure 16 shows the convergence plots for all three results
(LSRTM without preconditioning, LSRTM with precondition-
ing, LSRTM without preconditioning using the preconditioned
result as a starting guess). The convergence is not as good as
for the synthetic case due mostly to noise in the data (high
amplitude, coherent) and inaccuracies of the velocity model.
For the same reasons, the dramatic speed-up we could witness
using the preconditioning scheme for the synthetic example is
reduced with this field dataset.



8 A. Guitton

/=864 m

4000

~ Y=5.2 Km
36‘6@

<
)
C\27 %7 é
-
-
&)
O o
E 7%®
<
o N AL
&
|
@)
O
0
o

Receiver X

ynduy | pis prisey | ooad 'pisey
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Figure 14. (a) Velocity model for the North Sea dataset. The chalk layer is clearly visible between z=2.5 km and z=4 km as a strong velocity
contrast. (b) RTM and (c) LSRTM (15 iterations) images. The depth slices show the amplitude balancing effect of LSRTM. With LSRTM, artifacts
are attenuated on the edges of the model and resolution is improved.
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Figure 15. A comparison between (a) the LSRTM image with preconditioning after two iterations, and (b) the LSRTM image without precondi-

tioning after five iterations using (a) as the starting model.

5 DISCUSSION

Overall, the methodology works very well: non-stationary
matching filters provide a cheap and efficient way to approxi-
mate the inverse Hessian in 3D. The convergence of LSRTM
is improved dramatically with a synthetic test case, and sub-
stantially with a field data example. Switching from precondi-
tioned to un-preconditioned LSRTM seems to provide all the
benefits of LSRTM for about half the cost.

Many interesting avenues of research are left untouched.
First, effects of the wrong velocity on the filter estimation
process and preconditioned LSRTM need to be investigated:
clearly, the field data example tends to prove that noise in
the data and velocity errors have effects that need to be bet-
ter understood. Second, it would be very beneficial to use this
technique with extended images where the cost of inversion is
quite higher than with a zero subsurface-offset LSRTM (Hou
and Symes, 2016). Recently, Khalil et al. (2016) showed an

implementation of matching filters in the data space. A com-
bination of both ideas (data and model space filters) might im-
prove convergence even further. Finally, studying the influence
of m on the inverse Hessian approximation could improve
the method: starting from spikes, flat layers, etc..., might prove
useful in building better filters.

There are implementation details that need to be worked
on as well. The filter estimation process can be expensive. For
shallow target, I observe that filters can be quite small. For
deeper reflectors and not-so-well illuminated targets (like be-
low the chalk layer in the North Sea dataset), bigger and more
expensive filters are needed. A filter which size would change
with position would help mitigating the computing costs.

One missing feature of the preconditioned LSRTM with
matching filters is the increase of resolution. This should come
at no surprise to us: because I use a convolution in equation
(4) to match a lower resolution image mz to a higher reso-



12  A. Guitton

lution image m;, we can’t recover the high wavenumbers. In
other words, when I apply the filters & to the gradient in Al-
gorithm 2, I also bandpass it. Therefore, I steer the solution
to a smoother version of the true model. To mitigate this lack
of resolution improvement, I offer three solutions. First, I can
stop using the filters, as done with the Volve dataset and iter-
ate a few times to recover the high wavenumbers. Second, I
can use different filter sizes for each LSRTM iteration. This
would come at the extra cost of estimating more filter banks.
Finally, I can add a regularization operator to the LSRTM ob-
jective function that will boost the high wavenumbers. This
can be done using a sparsity-promoting functional such as the
£' norm or Cauchy function, for instance. All three solutions
must be appraised not only on the quality of the final image,
but also on the convergence improvement. My goal, after all,
is to speed-up inversion, not to slow it down.

These issues set aside, one of the main benefits of the
proposed approach is that it works for any imaging operator.
Including anisotropic or elastic effects is trivial because the fil-
ter estimation process remains the same: most of the physical
(and geometrical) aspects of wave propagation are encapsu-
lated in the two images we are trying to match.

6 CONCLUSION

3D matching filters can approximate the inverse Hessian of
the least-squares RTM problem. Without any inversion and
by simply applying the filters to the RTM image, noticeable
improvements in terms of illumination and artifacts reduction
are obtained. Using these filters in an inversion scheme to pre-
condition the gradient further improves the image and con-
vergence properties. On a 3D synthetic example, the conver-
gence speed-up is significant (~ x5) while a field data ex-
ample shows a more modest but still welcome improvement
(~ Xx2).
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