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ABSTRACT

Distributed acoustic sensing (DAS) uses an optical fiber together with an interrogator
unit to perform strain measurements. The usage of DAS in geophysics is attractive
due to its dense spatial sampling and low operation cost if the optical fiber is freely
accessible. In the borehole environment, optical fibers for DAS are often readily avail-
able as a part of other sensing tools, such as for temperature and pressure. Although
the DAS system promises great potential for reservoir monitoring and surface seismic
acquisition, the single axial strain measurement of DAS along the fiber is inadequate
to fully characterize the different wave modes, thus making reservoir characterization
challenging. We propose an acquisition system using five equally spaced helical optical
fibers and a straight optical fiber to obtain six different strain projections. This system
allows us to reconstruct all components of the 3D strain tensor at any location along
the fiber. Analyzing the condition number associated with the geometry of the optical
fiber, we can systematically search for the optimum design parameters for our config-
uration. Numerical examples demonstrate the effectiveness of our proposed method to
successful reconstruction of the full strain tensor from elastic wavefields of arbitrary
complexity.
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multicomponent, tensor

1 INTRODUCTION

Distributed Acoustic Sensing (DAS) systems use an optical
fiber as a distributed array of strain measuring tool. A typical
DAS system employs an interrogator unit to send laser pulses
into an optical fiber and detect back-scattered light along the
fiber. DAS systems that operate on Coherent Optical Time-
Domain Reflectometry (COTDR) provide average axial strain
measurement through analyzing the perturbed phase differ-
ence between back-scattered light along the optical fiber from
two points separated by a distance known as gauge length.
Acceptable signal-to-noise ratio (SNR) measurements can be
achieved using conventional DAS systems that require a gauge
length of around 1 m. However, Farhadiroushan et al. (2016)
show that the gauge length can be reduced to 5 cm, while
maintaining satisfactory SNR using specially designed optical
fibers.

Despite the recent technological advances in DAS, mul-
ticomponent DAS remains a missing piece of the puzzle to
capture the full character of the seismic wavefield. In borehole
application specifically, the usage of DAS focuses mainly on
reservoir imaging (Mestayer et al., 2011; Mateeva et al., 2012,
2013; Wu et al., 2015; Zhan et al., 2015; Jiang et al., 2016)

and velocity model updates (Wu et al., 2015; Li et al., 2015).
Although, many examples show that DAS has the potential to
provide low-cost reservoir monitoring (Hornman et al., 2015;
Dou et al., 2016; Chalenski et al., 2016), the conventional sin-
gle component DAS measurements makes reservoir character-
ization challenging. Since DAS acquires strain along the op-
tical fiber, the measurement is a projection of the surrounding
strain tensor as a function of the optical fiber position. As in-
dicated by Lumens (2014) and Bakku (2015), the DAS system
suffers from broadside sensitivity where the optical fiber is less
sensitive to transversally impinging signals.

Although DAS measures axial strain, it is possible to ob-
tain multicomponent data by reconstructing the entire strain
tensor using multiple strain projections; manipulating the ge-
ometry of the optical fiber allows us to obtain various direc-
tions on which to project the strain field. Lim and Sava (2016)
provide a basic workflow for recovering multicomponent DAS
data using strain projections acquired with dual optical fibers
or with a single chirping (variable pitch angle) helical optical
fiber. The pitch angle is the complement of the angle between
the tangent vector and the axial direction of the DAS cable.
The dual optical fibers configuration deploys two helical opti-
cal fiber of different constant pitch angle. This configuration is
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necessary to obtain sufficient projections for the strain tensor
reconstruction. Similarly, Lim and Sava (2016) demonstrate
the possibility of full strain tensor reconstruction using one
optical fiber with a chirping helix geometry, which provides
a broad range of strain projections, albeit at the expense of
a complex design. The underlying principle of their method
of strain tensor reconstruction is to group consecutive strain
measurements along optical fiber(s) within a defined window
larger than a gauge length. Despite successfully reconstruct-
ing the entire strain tensor, the drawback of this method is the
assumption that the seismic wavelength is significantly larger
than the defined analysis window. This assumption leads to a
strain tensor which is assumed to be invariant within the win-
dow. Therefore, the method proposed by Lim and Sava (2016)
could not be easily used for acquisition of short seismic wave-
lengths such as microseismic.

To overcome the limitation of the workflow introduced
by Lim and Sava (2016), we propose a configuration with five
equally spaced constant pitch angle helical optical fibers and a
straight optical fiber. Although we use an increased number of
optical fibers, we can obtain six different strain projections at
every location and avoid the need to group consecutive strain
measurements at different location along optical fiber(s) to get
sufficient strain projections for the reconstruction. We thus ob-
tain six different strain projections at every location and recon-
struct the full strain tensor without the need to assume invari-
ance in a wide window. The configuration reduces the engi-
neering complexity required to build a multi-fiber cable, and
also allows us to systematically analyze the effect of the as-
sociated design parameters (gauge length, diameter and pitch
angle of the helical optical fibers) on the strain tensor recon-
struction. We capture the gauge length in the reconstruction
process, which allows us to remove its averaging effect and
reconstruct strain data similar to multicomponent geophone
point measurements. We note, however, that our method pro-
vides the entire strain tensor, in contrast to geophone measure-
ments which provide the displacement vector.

We demonstrate a systematic way to choose the helical
optical fiber design parameters (diameter and pitch angle) and
the gauge length characterizing our system by analyzing the
condition number associated with the geometry our configura-
tion. Using the chosen parameters, we show the reconstruction
of the full strain tensor through 3D synthetic examples of ar-
bitrarily complex seismic wavefields.

2 THEORY

The axial strain acquired by DAS captures different projec-
tions of the surrounding strain tensor as a function of the lo-
cation and geometry of the optical fiber. We use the intrinsic
coordinate system of a curve as described by Pisano (1988) to
express the local coordinate system of the optical fiber with
respect to a global coordinate system. We use the tangent vec-
tor along the optical fiber to relate the axial strain measure-
ment with the surrounding strain tensor. The relationship be-
tween the axial strain and the surrounding strain tensor is given

through the coordinate transformation relationship (Young and
Budynas, 2002)

€=ReR", )

where € and R denote the transformed strain tensor and the
transformation (also known as rotation) matrix, respectively.
We rearrange equation 3 as

p=Gm, )

where p and m are the transformed and original strain tensors
respectively in vector form. The matrix G is the expansion of
equation 3 using the transformation matrix R and contains all
the geometric information about the optical fiber. For a single
optical fiber, we have infinitely many strain projections along
the optical fiber, where every projection being characterized
by equation 2. To fully describe the DAS measurements d, we
use equation 2 and account for the axial strain averaging effect
due to the gauge length as

d = WAGm, (3)
where A is a convolution operator describing strain averag-
ing within a gauge-length, and W is a windowing operator
that defines the channel spacing which refers to the distance

between consecutive average strain measurements within a
gauge length. The graphical representation of equation 3 is

d, W A p

= Pi
{m

where indices ¢, j, and n represent samples along the optical
fiber, components of the strain tensor, and measurements of
a DAS system, respectively. Every sample ¢ along the optical
fiber is an element in the projection vector p. Using the band
matrix that describes the convolution operator A, we capture
the gauge length effect of the DAS system. In order to replicate
a typical DAS system measurement, we apply a windowing
operator W to determines the channel spacing between aver-
age strain measurements, usually equal to the gauge length.
We represent the cascade operators of WAG as a linear oper-
ator L. In the case when we obtain sufficient strain projections
to describe the surrounding strain tensor, we can reconstruct
the strain tensor m in a least-squares sense as

m = (LTL)'LT4d. 4)

To achieve accurate reconstruction using equation 4, the Gram
matrix LTL has to be invertible which is inferred from the
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condition number associated with its singular values. There-
fore, it is advantageous to use the condition number as an in-
dicator of strain tensor reconstruction capabilities. This also
provides us with an opportunity to access various optical fiber
system designs, as discussed later.

Lim and Sava (2016) propose two configurations to ob-
tain multiple strain projections to reconstruct the entire strain
tensor. They demonstrate that two helical optical fibers of dif-
ferent constant pitch angles provide sufficient strain projec-
tions to accurately reconstruct the entire strain tensor. They
also show that a single helical optical fiber with varying pitch
angle is capable to provide adequate strain projections to re-
construct the entire strain tensor. In this reconstruction, Lim
and Sava (2016) group m consecutive strain measurements
(where n > 6 and possibly higher for improved SNR) along
the optical fiber(s) within a defined window to obtain d in
equation 4. Similarly, they group the associated linear opera-
tors L to form the Gram matrix. Although they demonstrate
successful reconstruction, their approach has the drawback
that it assumes a seismic wavelength significantly larger than
the defined window for reconstruction. This drawback limits
the application of this method to acquisition of long seismic
wavelengths, thus reducing the resolution of seismic imaging
with DAS data.

To overcome this drawback especially for applications
that require short seismic wavelengths, we propose a config-
uration using six optical fibers to reconstruct all components
of the strain tensor. Our approach is similar to the method of
Lim and Sava (2016), as we use multiple strain projections
to reconstruct the entire strain tensor using the formulation in
equation 4. However, our configuration forms a full rank Gram
matrix using measurements from individual optical fibers in-
stead of spatially grouping consecutive measurements along a
single optical fiber. Our new method allows us to reconstruct
the strain tensor m in equation 4 at any given location using
data d from individual measurements in the constituent optical
fibers. The equivalent graphical representation of equation 3
for our proposed method

Pik

Pik Gijk m;jx

where index k denotes the number of optical fiber used for
projections. Every sample ¢ along the optical fiber k is given
as an element in the projection vector py. The presences of k
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Figure 1. Optical fiber geometry with (a) six equally spaced vectors
of six pitch angles (20°, 30°, 40°, 50°, 60°, and 70°), and (b) five
equally spaced vectors of pitch angle of 20° with a straight vector in
the middle. Panels (c) and (d) depict tetrahedra and right pentagonal
pyramid respectively using the corresponding vectors in (a) and (b)
sharing the same origin. The plots in (e) and (f) show singular values
of the respective Gram matrices.

optical fibers allow us to form the data vector d,,; and recon-
struct the strain tensor m at a given location n. Note that the
minimum requirement is to have £ = 6 to reconstruct the six
components of the strain tensor, which is similar to require-
ment of the method of Lim and Sava (2016) where they group
n > 6 consecutive strain measurements.

We represent individual optical fibers in our proposed
configuration with tangent vectors to conceptually visualize
the associated measurements as shown in Figure 1(a) with dif-
ferent pitch angles from 20° to 70° at every 10°. Figure 1(c)
demonstrates that by using the same origin for all the vectors,
we obtain a right pentagonal pyramid. The geometrical impli-
cation of our configuration provides insights on the associated
strain projection, as discussed later. Using the projection ma-
trix G of the individual vectors, we evaluate the singular val-
ues of LTL as shown in Figure 1(e), which indicates that our
configuration is full rank, despite the fact that the smallest sin-
gular value is close to zero. A full rank Gram matrix indicates
that the corresponding configuration can reconstruct the entire
strain tensor. However, using multiple helical optical fibers of
different pitch angles increases the engineering complexity re-
quired to assemble the optical fiber system.

In order to simplify the design, we set our configuration to
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Figure 2. Example of five equally spaced helical optical fibers with a
diameter of 1 in and a pitch angle of 20°. The dots represent measure-
ment at the same length along respective fibers which refer to the same
portion of the cable indicated by the horizontal plane. The straight ver-
tical optical fiber is not included in this plot.

five equally spaced helical optical fiber with a 20° pitch angle,
together with a straight optical fiber as shown in Figure 1(b).
Rearranging the vectors to share the same origin allows us to
form a right pentagonal pyramid, as shown in Figure 1(d). The
straight fiber makes it possible to have all nonzero singular
values, as seen in Figure 1(f), that infer a full rank Gram ma-
trix. This configuration uses five equally spaced helical optical
fibers with constant pitch angle is less manufacturing challeng-
ing than a sweeping helical optical fiber and allows us to ob-
tain measurements at the same position in space along all the
helical optical fibers (illustrated in Figure 2).

Using the configuration in Figure 1(b) and analyzing
the condition number of the corresponding Gram matrix, we
search for the optimum pitch angle between 5° to 50° as
shown (solid line) in Figure 3. The lowest condition number is
around 20°; at this angle the strain projections are mainly con-
tributed by the horizontal components. The vertical vector in
our arrangement provides only vertical strain projections. This
implies that to accurately reconstruct the entire strain tensor;
lower pitch angles are desirable to obtain projections from hor-
izontal strain components as seen in Figure 3 where the condi-
tion number of the corresponding Gram matrix increases with
the pitch angle from 20°. However, we avoid low pitch angles
that are near horizontal to obtain projections from strain com-
ponents between horizontal and vertical (i.e. €, and €,.) for
accurate reconstruction of the strain tensor as shown in Fig-
ure 3, where the condition number decreases as the pitch angle
approaches 20°.

We investigate the effects of the geometrical change in

Figure 1(d) associated with the pitch angle of our configu-
ration in Figure 1(b) on the condition number of the corre-
sponding Gram matrix. To quantitatively assess the geometri-
cal implication of our configuration in Figure 1(d) which cor-
responds to a right pentagonal pyramid, we can calculate the
surface-area-to-volume ratio (SA:V) as shown (dashed line) in
Figure 3. SA:V provides us a measure of compactness of the
geometry associated with our configuration. Figure 3 shows
that the lowest SA:V (most compact geometry) corresponds
to the pitch angle around 20°, which coincides with the low-
est condition number of the Gram matrix associated with our
configuration in Figure 1(b). Observing the geometry for high
SA:V at 5° (Figure 4(a)) and 50° (Figure 4(c)), we can infer
that the geometries that are flat or elongated do not provide
a low condition numbers and thus do not lead to robust strain
reconstruction. However, Figure 4(b) reveals a compact geom-
etry with low SA:V that can provide sufficient projections to
describe the surrounding strain tensor for full and accurate re-
construction.

We investigate the effects of the gauge length on the
Gram matrix by considering single measurements as shown
(dots) in Figure 2. The azimuthal variation of the five equally
spaced optical fibers does not affect the Gram matrix as the
spacing between measurements are invariant as a function of
position along the optical fiber. Using the condition number of
the Gram matrix, we can systematically obtain the optimum
design parameters (gauge length, diameter and pitch angle of
the helical optical fibers) associated with low condition num-
bers as shown in Figure 5 (the colors represent the logarithm of
condition number). We can scan pitch angles from 15° to 35°
and diameters of the helical optical cable from 0.01 to 0.03 m,
for specific gauge lengths of 0.2, 0.4, 0.6, 0.8, and 1.0 m.

The strain measurement by the DAS system using a he-
lical geometry undergoes strain averaging in the azimuthal di-
rection along the optical fiber within a gauge length. When the
gauge length is equal to a multiple of the helix lead (the axial
advance of a helix for a complete 360° turn), the DAS mea-
surement does not contain azimuthal information, which trans-
lates into an undeniable high condition number in Figure 5. If
we increase the gauge length for the same diameter and pitch
angle (fixed helical optical fiber design parameters), the condi-
tion number is increasingly oscillatory, as shown in Figure 5.
The DAS measurement undergoes further azimuthal averaging
within a longer gauge length, thus reducing the ability to accu-
rately reconstruct the entire strain tensor. As we decrease the
diameter of the helical optical fibers, the oscillations increase
in frequency, which is also a result of increased azimuthal av-
eraging. An informed reduction of the design parameters using
the condition number ensures a high reconstruction accuracy.

In cases such as a borehole where dimensions (e.g. the di-
ameter) are often limited, we can perform a two-dimensional
parameter scan with one of the parameters fixed. In this pa-
per, we show numerical examples of reconstructing the strain
tensor using our new approach for identifying optimum pa-
rameters for a borehole environment, and we set the diameter
of the optical fiber system at 1 in.



High-resolution multicomponent distributed acoustic sensing 5

40 T T T T

condition number
N w
o o

=
o

10.5

pitch angle (°)

Figure 3. The solid line represents the condition number and the dashed line denotes the surface-area-to-volume ratio (SA:V) of a right pentagonal
pyramid at different pitch angles for the five vectors in Figure 1(d). Both graphs share the same minimum at around 20° pitch angle.
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Figure 4. Two pentagonal pyramid using five vectors with pitch angles of (a) 5°, (b) 20°, and (c) 50°. The three pyramids show the visual

relationship between the enclosed surface area and volume.

3 NUMERICAL EXAMPLES

Using numerical simulations, we reconstruct the entire 3D
strain tensor with the parametrization analysis in a borehole
scenario. In the following examples, we limit the dimensions
of the helical optical fibers to a diameter of 1 in and a pitch
angle of 20° as shown in Figure 2. By constraining the design
parameters for the helical optical fibers, we can search for an
optimum gauge length using the condition number of the Gram
matrix as shown in Figure 6. In our example, we scan between
0.05 and 1.10 m; we observe that there are several local min-
ima corresponding to low condition number throughout Fig-
ure 6. The corresponding gauge lengths at these local minima
are optimal (i.e. higher accuracy) for strain tensor reconstruc-
tion. The oscillating characteristic of the condition number in
Figure 6 shows that the gauge length has to be reduced sys-
tematically to ensure a low condition number for high recon-
struction accuracy. We illustrate our following examples with
gauge lengths of 0.1, 0.5, and 1.0 m, as shown (stars) in Fig-
ure 6. We choose the gauge length of 0.5 m that does not lie at

a local minimum to demonstrate that the strain tensor recon-
struct of a smaller gauge length may not necessary be superior
to a larger gauge length. This phenomenon is shown through a
similar level of reconstruction accuracy in Figure 9(c) (gauge
length of 0.5 m) and Figure 9(e) (gauge length of 1.0 m).

Using synthetic examples of a complex wavefield, we il-
lustrate the reconstruction of the three dimensional strain ten-
sor from axial strain measurements along the proposed opti-
cal fiber geometry using different gauge lengths. We simulate
using elastic finite-difference modeling a complex wavefield
with triplications (Figure 7(d)) caused by a velocity model
containing a low-velocity Gaussian anomaly, as shown in Fig-
ure 7(c). We use smaller than usual gauge lengths such as 0.1
and 0.5 m, which are possible using specially designed optical
fibers, as indicated by Farhadiroushan et al. (2016). However,
we also perform the analysis using a gauge length of 1.0 m to
show the effect of a more conventional fiber system.

Our experiment setup with a source indicated by a dot and
receivers indicated by a straight line of coordinates (s, ys)
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Figure 5. Condition number of the Gram matrix for pitch angle from 15° to 35° and diameter from 0.01 to 0.03 m. These slices are specifically
scanned for but not limited to gauge lengths of 0.2, 0.4, 0.6, 0.8, and 1.0 m.
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Figure 6. The plot shows a 1D parameter scan for the intersection between diameter of 1 in and 20° pitch angle of Figure 5. The stars mark the
condition number for gauge lengths of 0.1, 0.5, and 1.0 m.




High-resolution multicomponent distributed acoustic sensing 7

is shown in Figure 7(a). Figure 7(b), shown in a strain tensor
matrix layout, represents our target strain tensor reconstruction
observed along the receiver location at (x, ys ). The horizontal
and vertical axes of the individual panels represent the recon-
structed measurements along the optical fiber and time respec-
tively. Using a gauge length of 0.1 m, we can reconstruct the
strain tensor as shown in Figure 8(a). The difference plot be-
tween the observed and reconstructed strain tensor amplified
10 times is shown in Figure 8(b). We measure reconstruction
quality with the residual sum of squares normalized as

2
Hmobs _ mTecH

2
[[mebs]]

n 100 , 5)

where m°®® represents the observed strain tensor and m"®®
represents the reconstructed strain tensor. The scalar values
for 1 using a gauge length of 0.1 m are less than 10~ %%. Fig-
ure 8(c) shows the reconstructed strain tensor using the same
configuration, but with the gauge length at 0.5 m. The dif-
ferences in Figure 8(d) (also amplified 10 times) suggest that
the increase of gauge length has minimal impact on our recon-
struction. Although the calculated values for 7 increase overall
with the larger gauge length, the highest 7 is less than 10™2%,
which is still a very high level of accuracy for practical appli-
cations. Figure 8(e) shows the results of performing the same
reconstruction using a gauge length of 1.0 m. Although we can
observe some minor differences in Figure 8(f) (also amplified
10 times), the highest 7 is less than 10~2% which is lower than
the accuracy we get when we use a gauge length of 0.5 m. This
result indicates that reducing the gauge length does not neces-
sary improve the reconstruction accuracy; it moreover shows
that careful analysis (as presented in Figure 6) of parameters
is needed for accurate reconstruction.

Since the strain tensor reconstruction for the gauge
lengths of 0.1, 0.5, and 1.0 m is successful without the pres-
ence of noise, we repeat the process by adding random noise
with 30% of the maximum amplitude of the data (i.e. strain
projections) and in the data frequency band. Using a gauge
length of 0.1 m, the reconstruction shown in Figure 9(a) is
a success. The difference plot in Figure 9(b) shows primarily
random noise. Figure 9(c) shows the reconstruction results by
increasing the gauge length to 0.5 m. We observe stronger ar-
rivals although the results are noisy. The difference plot shown
in Figure 9(d) contains noise primarily. Figure 9(e) shows the
reconstruction using a gauge length of 1.0 m, and it shows a
similar result compared to the gauge length of 0.5 m. The same
observation applies to the difference plot in Figure 9(f). The
comparable quality of reconstruction between gauge length of
0.5 and 1.0 m shows that reducing gauge length significantly
(half in this case) does not guarantee improved reconstruction
quality.

4 DISCUSSION

We demonstrate full strain tensor reconstruction with a high
level of accuracy using six optical fibers (five equally spaced
helical optical fiber with a pitch angle of 20° and a straight

optical fiber). Our results under the presence of noise show the
importance of design parameters using the condition number,
as reducing the gauge length does not guarantee improvements
in reconstruction. However, small but achievable gauge length
with low condition number such as 0.1 m provides a robust
strain tensor reconstruction due to the low condition number
of the Gram matrix. A larger diameter of the helical config-
uration allows for a larger gauge length which improves the
reconstruction results in noisier environments. A relaxed di-
ameter dimension is more applicable in applications such as in
a surface seismic acquisition.

Using our proposed configuration, we can analyze the de-
sign parameters for the helical optical fibers systematically.
Scanning can be done in a general manner as shown in Fig-
ure 5 or under certain constraints (diameter or pitch angle of
the helical optical fiber) as shown in Figure 6. The design goal
is to obtain parameters that have the lowest possible condition
number of the Gram matrix GT ATAG calculated from the
averaging A and projection G matrices, while also satisfying
engineering constraints for optical fiber construction. Numer-
ous configuration of equivalent robustness and quality are pos-
sible. In the presence of optical fiber geometry uncertainty, we
can use a weighting operator in the reconstruction process or
the shape-sensing method (Moore and Rogge, 2012), as dis-
cussed in our previous paper (Lim and Sava, 2016) to improve
our reconstruction results.

5 CONCLUSIONS

We demonstrate that high resolution multicomponent dis-
tributed acoustic sensing data is achievable by using strain
projections along several optical fibers to reconstruct all com-
ponents of the 3D strain tensor. Five equally spaced helical
optical fibers, together with a straight optical fiber can be used
for reconstruction without assuming that strain changes slowly
along the fiber, as shown by Lim and Sava (2016). We thus
overcome the requirement that the seismic wavelength be sig-
nificantly larger than the window, and achieve multicomponent
strain reconstruction with high spatial resolution. This method
opens the possibility for acquisition of shorter seismic wave-
lengths, which aids imaging and reservoir characterization ap-
plications. Numerical examples show that our method can re-
construct the full 3D strain tensor for wavefields of arbitrary
complexity, and in the presence of strong noise in the band of
the seismic data.
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Figure 7. (a) Schematic representation of a DAS experiment depicting the source (dot) and receiver (line) locations. (b) The ideal strain tensor that
we would like to reconstruct from DAS measurements. (c) The P-wave velocity model containing a low velocity Gaussian anomaly designed to

produce wavefield triplications. The S-wave velocity is half of the P-wave velocity. (d) A snapshot of the vertical displacement wavefield.
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Figure 8. Strain tensor reconstructed with five equally spaced helical optical fibers and a straight optical fiber using a gauge length of (a) 0.1 m, (c)
0.5 m, and (e)1.0 m. (b), (d), and (f) are the difference between the ideal strain tensor in Figure 7(b) and the respective reconstructed tensor in (a),

(c), and (e) magnified 10 times.
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Figure 9. Strain tensor reconstructed from data containing random noise with 30% of the maximum data amplitude and band-limited to the data
band with five equally spaced helical optical fibers and a straight optical fiber using a gauge length of (a) 0.1 m, (c) 0.5 m, and (e) 1.0 m. (b), (d),

and (f) are the difference between the ideal strain tensor in Figure 7(b) and the respective reconstructed tensor in (a), (c) and (e).
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