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ABSTRACT

The capability to image through random media has been long-desired across
many fields of science and engineering. What makes this goal even more diffi-
cult in many applications of interest are the challenges associated with single-
sided illumination and recording of waves produced from such random media.
In recent years, much attention has been paid to the exploitation of statisti-
cal correlations between different waves that travel through the same random
medium. In particular, angular or tilt correlations known as the memory effect
have been used to successfully recover images of hidden objects in single-sided
experiments. The goal of this project is to obtain a method of recovering coher-
ent seismic images that accurately represent complex earth models by exploiting
such tilt correlations. While progress on the implementation of this method is
underway, the aim of the current report is to highlight the fundamental concepts
necessary for a basic understanding of these tilt correlations.
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1 INTRODUCTION

Coherent wave transmission through a highly random
medium, or reflection off a rough surface, results in
an interference pattern known as speckle [Goodman
(1975)]. The memory effect is a phenomenon of wave
propagation in which variations in the illumination, or
incident wave, are preserved in the reflected or trans-
mitted wave produced from the random medium, pro-
vided the variations are not too large. Thus, what was
once thought to be a hopelessly complicated relation
between the incident wave and the scattering medium,
the complex and seemingly random speckle pattern has,
in fact, a predictable behavior owing to the memory ef-
fect. The degree to which the changes in illumination are
preserved in the reflected or transmitted wave is mea-
sured by means of a correlation. The correlation is taken
between a designated reference speckle pattern and an-
other speckle pattern produced by perturbing the inci-
dent wave. For example, such a perturbation might be
the change in angle of incidence of the incoming wave.

The memory effect was originally derived by ap-
plying a diagrammatic perturbation expansion to the
intensity-intensity correlation function for optical wave
transmission through random media [Feng et al. (1988)].
What was to be termed the “memory effect” was the

leading order correlation term in this perturbation ex-
pansion (this term is also commonly referred to as
the short-range angular correlation, tilt correlation, or
memory correlation function). The distinctive property
of the memory correlation function is that it is present
only if the change in angle of the outgoing wave matches
the change in angle of the incident wave. This property
causes the random speckle pattern to track the motion
of the incident wave without decorrelating. For an in-
cident wave with wave vector k that transmits through
a random medium of thickness D, the diagrammatic
calculation of Feng et al. (1988) determined that the
memory correlation function should asymptotically fall
off for changes in angle of incidence greater than 1/kD,
after which the speckle pattern changes. The predic-
tions of this derivation were first experimentally verified
by Freund et al. (1988), who also extended the theory
to include memory correlations for reflections off rough
surfaces. Berkovits et al. (1989) showed the physical ba-
sis of the memory effect to be the diffusive probability of
a photon that enters the scattering medium at one point
and exits the scattering medium at another. The diffu-
sion probability function is maximized when the pho-
ton enters and exits the scattering medium from points
near the mean scatterer position along the line of sight.
This result was derived by considering the interference
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of all possible photon trajectories through the random
medium. An important conclusion of this derivation was
that the memory effect is independent of the phases ac-
quired by the waves through the multiple scattering pro-
cess. Much research has since been done on the funda-
mental properties and applications of the memory effect,
including its generalization to polarized waves, incorpo-
ration of the effects of internal reflections and absorption
within the scattering medium, and noninvasive imaging
experiments [Freund et al. (1989); Berkovits and Kaveh
(1990a,b,c,d); Freund and Berkovits (1990); Berkovits
and Feng (1994); Kurita et al. (1999); Vellekoop and
Aegerter (2010); Bertolotti et al. (2012); Katz et al.
(2012, 2014); Judkewitz et al. (2015); Bertolotti (2015)].

In this paper, we offer a simple derivation which
shows explicitly the trajectories through the random
medium for which the memory effect holds. We derive
the memory effect for the case of a point source us-
ing geometrical arguments only, without the need to
invoke diagrammatic methods or special functions. The
emphasis of our derivation is on the phases of the scat-
tered waves, showing that the necessary conditions for
the memory effect to hold can be found by consider-
ing path differences and a conservation argument. Ad-
ditionally, while previous treatments of the memory ef-
fect have been given in the frequency domain assuming
a monochromatic, continuous-wave source, we demon-
strate the memory effect in the time domain using a ban-
dlimited pulse source by performing two-dimensional
numerical simulations. Although our source is bandlim-
ited, we continue to refer to the simulated interference
pattern as “speckle” for consistency with the literature.

2 THEORY

A speckle pattern is produced by the superposition of
many different scattered waves that interfere with effec-
tively random phases. Thus, because the memory effect
is a speckle phenomenon (an interference phenomenon),
it can manifest in any solution to a linear wave equa-
tion. As we will show in this section, the backbone of
the memory effect is simply the superposition principle,
together with a few geometrical arguments.

The key principle behind the memory effect is that
a particular speckle realization is the result of waves
that interefere with particular phase differences. That
is, the random but unique phase differences between the
different scattered waves are what produce a particular
speckle pattern. Intuitively, to observe the same speckle
pattern after we change the angle of incidence of the
incoming wave, our first condition to impose is that the
phase differences amongst the different scattered waves
be preserved, or held constant. This conservation argu-
ment imposes the geometrical constraints on the scat-
tered waves that contribute to the memory effect, as we
illustrate below.

Suppose we have a point source (denoted by a star

in Figure 1) that emits a pulse which transmits through
a random medium. On the other side of the random
medium, we observe the resultant speckle pattern at a
point r0 (the point of observation denoted by an in-
verted triangle in Figure 1). While a phase difference
can be found between any two aribtrary waves at r0,
possibly the simplest choice is to let the phase of the
direct wave (i.e., the nonscattered wave that traverses
the line of sight connecting the point source to the
speckle spot) be the reference against which all other
phases are compared. Using this choice of reference, we
consider the wave function at the point r0 and for a
fixed wave number k. The wave function is then given
by a summation over all possible scattering trajecto-
ries p through the random medium consisting of a finite
number of isotropic point scatterers [Groenenboom and
Snieder (1995)]:

ψ(r0) =
∑
p

Ape
ikLp =

∑
p

Ape
ik(L0+∆Lp). (1)

Here, Ap is the complex amplitude and Lp is the path
length attributed to path p. Denoting the length of
the line of sight trajectory by L0, the path difference
∆Lp := Lp − L0 is used to determine the phase differ-
ence between any scattered wave and the direct wave.

Let us denote by ∆Lp the path difference before

the incident wave is perturbed, and by ∆̃Lp the path
difference after the incident wave is perturbed. Then,
according to our conservation argument, we must im-
pose the condition ∆̃Lp = ∆Lp to obtain the memory

effect. It remains to determine ∆Lp and ∆̃Lp.
Figure 1 illustrates the geometry of our problem.

For the direct wave, its path is characterized by the
unit wave vector k̂0 along the line of sight path vector r0

(here, we have tacitly assumed the origin of our frame of
reference to be the location of the point source). For any
scattered wave, however, the path length is more diffi-
cult to determine. A major simplification arises when we
consider the fact that a perturbation in the path length
of any given trajectory through the random medium de-
pends only on the variations in length from the source
to the first scatterer and from the last scatterer to the
point of observation; that is, perturbing the incident
wave does not change the multiple scattering trajecto-
ries occurring between the first and last scattering events
along a given path. This observation allows us to rele-
gate the total phase contribution of these multiple scat-
tering trajectories to a constant ϕp for each path. Thus,
to determine the path length of a scattering trajectory
p, we need the path vector from the point source to the
first scatterer, denoted by rip, and the path vector from
the last scatterer to the point of observation, denoted
by rtp. By using the inner product 〈·, ·〉, we may deter-
mine the incidence and transmission angles θip and θtp,
respectively, formed between any trajectory and the line
of sight (see Figure 1).
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Figure 1. Definition of the problem geometry for a point

source. The solid lines indicate the original incident and

transmitted waves. The dashed lines indicate the perturbed
incident and transmitted waves. Arbitrary multiple scatter-

ing is represented by the wiggly line.

With these considerations, the path difference be-
fore perturbing the incident wave, ∆Lp := Lp − L0, is
given by

∆Lp =〈k̂0, rip〉 sec θip + 〈k̂0, rtp〉 sec θtp

+ ϕp/k − 〈k̂0, r0〉.
(2)

More care needs to be taken to determine the path
difference ∆̃Lp after perturbing the incident wave. For
a point source, we can change the angle of incidence of
the incoming wave by simply perturbing the location of
the source in a direction orthogonal to the line of sight
(we could, in fact, perturb the source position in any ar-
bitrary direction, but only the component orthogonal to
the line of sight affects the path difference). Therefore,
we let δr denote a perturbation in the source position
such that 〈k̂0, δr〉 = 0. For a scattered wave, such a per-
turbation in the source position results in a change in
angle of incidence ∆θip to the first scatterer. However,
as stated above, the multiple scattering trajectories be-
tween the first and last scattering events do not change
as a result of δr. Thus, any variations in path length
caused by a change in angle of incidence must be com-
pensated for by a change in angle of transmission ∆θtp
from the last scatterer to a new point of interference.
Keeping in mind that we need to preserve the phase
difference between the scattered and direct waves after
perturbing the source position, we must also require the
direct wave to rotate through some angle ∆θi; however,
it is not yet clear about which point the direct wave
must rotate. We denote this unknown rotation point by
rx (again, see Figure 1).

Thus, by anology with equation (2), the path dif-

ference after perturbing the incident wave ∆̃Lp is given
by

∆̃Lp =〈k̂0, rip〉 sec(θip + ∆θip) + 〈k̂0, rtp〉 sec(θtp + ∆θtp)

+ ϕp/k − 〈k̂0, r0〉 sec ∆θi.
(3)

Notice that when we set ∆̃Lp = ∆Lp, the constant
ϕp/k cancels, in perfect agreement with the conclusion
of Berkovits et al. (1989), reaffirming that the memory
effect is independent of the phases acquired through the
multiple scattering process. Another important charace-
teristic is the general form of the path difference in equa-
tions (2) and (3). In particular, the path difference de-
pends upon sec θ, which grows very large as θ deviates
from 0◦, causing the complex exponential in equation
(1) to rapidly oscillate. Thus, a path summation (inte-
gration) amounts to integrating over angles θ, and its
dominant contribution comes from incidence and trans-
mission trajectories nearly parallel to the line of sight
[Bleistein (1984)]. We therefore assume the angles in
equations (2) and (3) are close to 0◦, and approximate
the secant function by a second-order Taylor expansion.

Since rip and rtp are now assumed to be nearly

parallel to k̂0, we see that they are approximately scaled
versions of r0, the original line of sight path vector. We
therefore drop the boldface vector notation and use the
scalar equivalent. We introduce scalars αp, βp ∈ [0, 1]
such that rip ≈ αpr0 and rtp ≈ βpr0. With these small
angle approximations, we can write the condition for
the memory effect ∆̃Lp = ∆Lp using equations (2) and
(3) as

αp∆θ
2
ip + βp∆θ

2
tp = ∆θ2

i . (4)

Because there is only one direct wave in a path sum-
mation, ∆θi is an unknown constant, whereas ∆θip and
∆θtp vary with scatterer position along the line of sight.
Assuming we know the location of our point source and
all the scatterers, we can, in principle, determine ∆θip.
Thus, we have one equation and two unknowns: ∆θi and
∆θtp. We would like to solve for the change in angle of
transmission, ∆θtp, and we may do so using the follow-
ing constraint. Under our current approximations and
assumptions, the first and last scattering events lie along
the line of sight. Is there a single point along this line
such that the change in angle of incidence ∆θip is nearly
constant, i.e., independent of the path p? We choose the
unknown rotation point rx to be this point. Then, given
〈k̂0, δr〉 = 0, we have ∆θi ∼ δr/rx (see Figure 1) and
∆θip ∼ δr/(αpr0). We seek the point rx along the line
of sight such that the change in angle of incidence of
the direct wave ∆θi is as close as possible to the change
in angle of incidence of the scattered wave ∆θip for the
most paths p. This occurs when rx minimizes

S(rx) =
1

2

∑
p

(αpr0 − rx)2. (5)

Thus, the point rx about which the direct wave rotates
is simply the average scatterer position along the line
connecting the point source to the speckle spot; that is,
rx = αavr0, where αav is the average value of αp along
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the line of sight. For paths p such that rip ≈ rx, we have
∆θip ≈ ∆θi, and from equation (4) we find

∆θtp =

√
1− αav
βp

∆θi. (6)

Let D be the thickness of the scattering region along
the line of sight and ε := D/L0. Then, for all paths p
such that 1−(αp+βp) ≤ ε, we have ∆θtp−∆θi = O(ε),
which goes to 0 as ε goes to 0. In other words, the phe-
nomenon in which changes in the angles of incidence
and transmission are equivalent occurs only for a very
small subset of trajectories through the random medium
where the first and last scattering events occur near the
mean scatterer position along the line of sight. This re-
sult is the well-known memory effect. The dependence
upon the thickness of the random medium is explicit
via the parameter ε. In particular, the memory effect is
most pronounced for transmission through thin media,
which is consistent with performed experiments (see, for
example, Freund et al. (1988); Bertolotti et al. (2012)).
Also note that our result does not impose any restric-
tions on the random scattering trajectories occurring
between the first and last scattering events. Thus, in
this context, much of the scattering that goes on inside
the random medium is completely arbitrary (see Figure
2).

We next consider the temporal effects of a pulse
source (i.e., a source of finite duration). In this case, the
transmitted speckle pattern is a time varying function of
path length. While we have shown the memory effect to
hold in general for any trajectory that satisfies α+β ≈ 1,
only for paths p that also satisfy the subsidiary condi-
tion ∆Lp < λ/4 will the scattered waves interfere co-
herently in time. That is, forward-scattered waves that
pass through the first Fresnel zone will interefere with
the direct wave, whereas multiple-scattered waves that
perform a random walk will not interfere with the direct
wave at all. For a pulse source, therefore, only the ballis-
tic waves contribute to the shift in the speckle pattern.
On the other hand, if the source is of an infinite duration
(i.e., a continuous-wave source), at any given moment
the speckle pattern is the simultaneous superposition of
waves traveling along both ballistic and random walk
trajectories, and both sets of trajectories contribute to
the shift in the speckle pattern.

If one assumes the density of scatterers to be uni-
form, the maximum change in angle of incidence (and
consequently the maximum change in angle of trans-
mission) for which the path vectors rip and rtp remain
within the same Fresnel zone is

∆θmax ∼
WF

D
, (7)

where WF is the width of the Fresnel zone determined
by
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Figure 2. A schematic illustrating two possible tracjecto-
ries through a random medium, shown as the shaded region,

that contribute to the memory effect. The interference of the

direct and scattered waves produce a speckle spot, shown as
the dashed ellipse. The simplest forward-scattered trajectory

is shown as the green dashed arrow. A random walk trajec-
tory is shown as the purple dashed arrow. Both trajectories

satisfy α+ β ≈ 1.

WF =

√
λL0αβ

2
. (8)

As the change in angle of incidence increases past
∆θmax, the path vectors rip and rtp begin to pass
through a different Fresnel zone – where the waves inter-
act with different scatterers – and the resulting speckle
pattern changes.

The extension of the memory effect to the case of
an incident plane wave can be made by considering the
limit in which the point source is placed infinitely far
from the scattering medium. Then, by definition, all in-
cidence angles are the same, and the memory effect will
hold for any line of sight between the incident plane
wave and the transmitted speckle pattern, provided the
location of the last scattering event is near the average
scatterer position along the line of sight.

3 NUMERICAL SIMULATIONS

To test the validity of our derivation, we model the
transmitted wave fields in a two-dimensional Cartesian
geometry using the method described by Groenenboom
and Snieder (1995). To simulate the scattering medium,
we randomly embed 100 isotropic point scatterers in
a 1000 m × 800 m region within a constant velocity
background (c = 2000 ms−1). The scattering medium
is placed 8000 m from a point source initially located
at the origin (Figure 3). A set S = {s0, s1, . . . , s100}
of receivers is placed behind the scattering medium be-
tween (9500 m, ± 200 m) at 4-meter spacing. The point
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Figure 3. A homogeneous velocity model with 100 isotropic

point scatterers randomly embedded in a 1000 m × 800 m

region. The point source is located at (x, z) = (0 m, 0 m).
A line of 101 receivers extends from (9500 m, ± 200 m) at

4-meter spacing.

source emits a single pulse with a bandwidth of 10 Hz
to 80 Hz and central frequency ν0 = 45 Hz (dominant
period T0 = 0.022 s). We perturb the source in the ver-
tical direction in ±100 m increments up to a maximum
displacement of δr = ±1400 m. For each value of δr,
the source emits a pulse which transmits through the
scattering medium, producing multiple-scattered waves
that are recorded at each receiver for 367 T0.

With this model geometry, the mean scatterer po-
sition rx along the line of sight between the origin and
the midpoint of the receiver line is approximately lo-
cated at (8700 m, 0 m). Using equation (8), the width
of the Fresnel zone is WF ≈ 128 m, leading to a max-
imum change in angle of incidence ∆θmax ≈ 7.3◦. We
therefore expect the memory effect to break down when
|δr|/rx ∼ ∆θmax, or |δr| ≈ 1100 m.

To measure the similarity of the transmitted wave
fields produced for each δr, we compute time-shifted
cross-correlations between the reference (δr = 0) and

perturbed (δr 6= 0) wave fields ψ and ψ̃ at each re-
ceiver position. Furthermore, we apply three different
time windows to measure the range of the memory ef-
fect in various parts of the (time-domain) wave field: the
full waveform (i.e., the entire wave field recording), the
ballistic wave (window length = 11 T0), and the coda
(window length = 130 T0). These time windows are il-
lustrated in Figure 4. The correlation coefficient Cδrij (τ)
is given as

Cδrij (τ) =

∫
ψi(t)ψ̃j(t+ τ) dt√∫
ψ2
i (t) dt

∫
ψ̃2
j (t) dt

, −1 ≤ Cδrij (τ) ≤ 1,

(9)
where the integration is over the time window under
consideration. For each receiver pair (i, j), we plot the
correlation coefficient at the time shift τ∗ for which
Cδrij (τ∗) attains its maximum value. In the special case
δr = 0 m, C0

ij(τ
∗) = 1 when i = j (i.e., the auto-

correlation). We define the mean correlation coefficient
〈C〉 and mean speckle shift 〈δs〉 for each value of δr as

FW

B C

Figure 4. A typical wave field recorded at one of the re-
ceivers. Forward-scattered waves that arrive early in the

waveform constitute the ballistic arrival (time window B).

Multiple-scattered waves that arrive later in the waveform
constitute the coda (time window C). The full waveform is

indicated by FW.

〈C〉 =
1

|S|
∑
i∈S

max {Cδrij (τ∗) : j ∈ S},

〈δs〉 =
∆z

|S|
∑
i∈S

(
arg max

j
Cδrij (τ∗)− arg max

j
C0
ij(τ

∗)
)
,

(10)
where |S| is the number of receivers and ∆z is the re-
ceiver spacing.

4 DISCUSSION OF THE NUMERICAL
SIMULATIONS

Examples of the correlation (9) are shown in Figure 5
for the full waveform, ballistic, and coda time windows,
respectively, for δr = 0 m and δr = 500 m. Within each
plot, the rows represent receiver i measuring the refer-
ence wave field ψ, the columns represent receiver j mea-
suring the perturbed wave field ψ̃, and the color values
represent Cδrij (τ∗). The patterns in both the full wave-
form and ballistic correlation plots are nearly identical,
and simply show that the pattern shifts (or translates)
across receivers as δr changes. The pattern in the coda
correlation, however, is different from those in the full
waveform and ballistic correlations. Furthermore, there
is no coherent shift in the coda pattern as δr is changed;
rather, we see the values of the correlation function ran-
domly fluctuate as δr changes.

The mean correlation coefficient and mean speckle
shift as functions of δr (equation 10) are shown in Figure
6. The full waveform, ballistic, and coda time-windowed
correlations all show that the mean correlation coef-
ficient 〈C〉 decays to an average background value as
δr is increased. Note that the decay of 〈C〉 for the full
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Figure 5. Cross-correlation plots showing Cδrij (τ∗) for the
full waveform FW, ballistic B, and coda C time windows.

Plots are shown for δr = 0 m (left column) and δr = 500 m

(right column).

waveform and the ballistic correlations is not symmet-
ric about δr = 0 m, but the decay of 〈C〉 for the coda
correlation is almost perfectly symmetric.

A simple explanation for this observation is the
nonuniform scatterer density of our model (Figure 3);
that is, the perturbations in the wave field when δr > 0
are different than those when δr < 0. Thus, the scat-
terer density appears to affect the rate of decay of the
memory effect with increasing δr (increasing ∆θ), sug-
gesting the relation (7) does not hold when there are
significant variations in scatterer density. In a medium
with a uniform density of scatterers, however, we ex-
pect the decay of the memory effect to be approximately
symmetric about δr = 0 m (∆θ = 0◦). The symmetry
in the falloff of the coda correlation can be attributed
to the fact that nonballistic waves traverse much longer
paths throughout the scattering medium, thereby aver-
aging out variations in the density of scatterers.

The right hand column of Figure 6 shows the mean
speckle shift 〈δs〉 versus δr for the full waveform, bal-
listic, and coda correlations. The negative slope about
δr = 0 m for the full waveform and ballistic correlations
confirms that the transmitted speckle pattern shifts in
the direction opposite to the source perturbation. The
value of δr at which the slope changes from negative
to positive indicates the maximum range of the mem-
ory effect. Note how the slope becomes positive near

hCi h�si

FW

B

C

Figure 6. Mean correlation coefficient 〈C〉 (left column)
and mean speckle shift 〈δs〉 (right column) as functions of

δr for the full waveform FW, ballistic B, and coda C time-

winodwed correlations.

δr = 1100 m in the plot for the full waveform cor-
relation, in agreement with our prediction. The near-
horizontal slope in the coda correlation about δr = 0 m
confirms that there is no coherent speckle shift for the
coda waves.

5 LOOKING FORWARD TO
GEOPHYSICAL APPLICATIONS

We have shown that the memory effect can be derived
by requiring phase differences to be conserved after a
perturbation in the incident wave. From this conser-
vation argument, we found the memory effect to hold
for any trajectory through a random medium where the
first and last scattering events occur near the mean scat-
terer position along the line of sight, as illustrated in
Figure 2. Thus, the memory effect is independent of the
phases acquired through the multiple scattering process,
in agreement with established theory [Berkovits et al.
(1989)]. Our numerical simulations of pulse transmis-
sion through a random medium illustrate the temporal
effects of the geometrical constraints imposed on the
scattering trajectories that contribute to the memory
effect.

Now that we have presented the basic ideas behind
the memory effect, we extend this simple analysis to
a seismic example. Figure 7 shows a relatively simple
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Figure 7. A simple density model with a random scattering
layer (units are g/cm3).

(a) (b)

(c) (d)

Figure 8. (a) A normal-incident plane wave (b) Recorded

data resulting from 8a (minus the direct arrival) (c) A ro-
tated incident plane wave (d) Recorded data resulting from

8c (minus the direct arival).

stratigraphic model – two horizontal reflectors offset by
a vertical distance – overlaid by a layer of random scat-
tering blobs. We use plane waves to illuminate the model
for simplicity and also to make the memory effect most
obvious. We place receivers all across the surface of the
model and record the wave fields produced by changing
the angle of the incident plane wave. Figure 8 shows the
result of injecting a plane wave into the model at normal
incidence (8a) and at rotated angle (8c). The recorded
data produced from the model are shown in (8b) for the
normal-incident plane wave and in (8d) for the rotated
incident plane wave. Although the data itself may ap-
pear quite complex, we see that the two data sets are
essentially identical, rotated versions of one another. An
imaging method which exploits these tilt correlations,
for example, could use the data sets obtained from mul-
tiple angles of illumination to enhance the time-reversed
wave field in a migration scheme.
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