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ABSTRACT

Environmental impact and the high cost of acquiring land seismic data are major fac-
tors to consider when designing a seismic survey. We explore means to quickly record
seismic data without disturbing, or contacting, the ground surface, while reducing en-
vironmental impact and cost. Recent developments in computer vision techniques and
drone technology lead us to propose passively observing ground displacement with a
drone-borne stereo video camera system. The recovered displacement is represented
as a time varying probability distribution function (PDF) of ground displacement. Us-
ing this PDF, we can estimate the uncertainty of the displacement measurements. We
conclude that currently available camera and drone systems may be used to measure

sub-millimeter ground displacements, with associated uncertainties.
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1 INTRODUCTION

Geophysical survey design requires one to consider the envi-
ronment, access, and acquisition cost. When operating in en-
vironmentally sensitive areas, it may not be possible to con-
duct a ground-based survey without disturbing an ecosystem.
In addition, in remote locations a survey may not be feasi-
ble due to access or other logistical concerns. Financial limi-
tations also influence data acquisition feasibility. For example,
when performing a seismic survey, a large amount of equip-
ment, time, and personnel are required, leading to high acqui-
sition cost. The cost may be reduced by optimizing survey de-
sign parameters such as seismic source geometry, source sig-
nal length and frequency content, and receiver spacing. Tech-
nological advancements can also reduce costs and potentially
lead to new opportunities for exploration; an excellent exam-
ple is distributed acoustic systems (DAS) (Bostick III, 2000;
Mestayer et al., 2011; Mateeva et al., 2012; Daley et al., 2013;
Mateeva et al., 2013, 2014). We advocate in this paper, that re-
cent developments in computer vision and robotics also have
the impact potential for seismic data acquisition, leading to-
wards fast, low cost, and environmentally friendly airborne
seismic surveying.

Monitoring motion without contacting a surface can be
performed using passive or active systems. Laser Doppler vi-
brometers (LDV) are examples of active systems, which use
known source signals and the phase of the return signals to
deduce the distance the signal travelled to a target. LDV’s
have been used in the past to investigate the feasibility of re-
motely detecting ground motion from seismic waves (Berni,
1991, 1994). Other active systems uses microwaves, and in-

terferometry, to deduce vibrations and resonant frequencies in
a structural engineering context such as in Stanbridge et al.
(2000). In contrast to active systems, passive systems do not
require a source for deducing motion and leverage high speed
video cameras and ambient lighting. Here we focus on passive
methods for deducing motion.

We advocate measuring ground displacement as a func-
tion of time using stereo vision theory. As our left and right
eyes allow for depth perception, two images taken from lat-
erally offset cameras allow for a distance estimate. Stereo vi-
sion has been used in the past to passively deduce distance
using two images taken from laterally offset cameras (Quam
etal., 1972). We measure the lateral shift, or disparity, between
points observed in the two images. As we show later, this dis-
parity is inversely proportional to the distance from the camera
to the points observed in the images. Therefore, the process of
finding ground displacement from stereo images requires us to
accurately compute perceived shifts between two images. The
stereo vision process is discussed in more detail in the Theory
section.

A drawback of stereo vision is that small disparity errors
result in large distance errors; we therefore must be able to pre-
cisely measure shifts between images in order to obtain a reli-
able distance measurement. To improve our ability to measure
small shifts between images, we can amplify the shifts using
a recent and exciting advancement in computer vision called
motion magnification. Motion magnification allows us to re-
motely monitor visually imperceivable vibrations using pas-
sive high speed cameras (Wahbeh et al., 2003; Wadhwa et al.,
2014; Rubinstein et al., 2014). The technique has been used by
many others to solve various scientific engineering problems.
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Chen et al. (2014) use the method for deducing structural in-
formation of a steel beam using video; a similar approach is
taken by Shariati et al. (2015) to deduce natural structural vi-
bration modes of other structures. Remotely monitoring heart-
beats using video is another intriguing use of motion magnifi-
cation (Wu et al., 2012). Davis et al. (2014) recover sound from
video alone by filming light objects, e.g. a bag of chips, subject
to tiny vibrations caused by someone speaking in the vicinity.
It is our intention to apply motion magnification, in conjunc-
tion with stereo vision, in order to acquire seismic data without
contacting the ground. Although do not include motion mag-
nification in this paper, we note that contactless motion can
benefit significantly from this new development.

In this paper, we demonstrate and detail a method for
sampling a seismic wavefield, represented by ground displace-
ments, that has potential to reduce costs while providing new
opportunities for geophysical exploration or earthquake mon-
itoring. First, we clarify the stereo vision theory used to de-
termine ground displacement variations with time. Using the
collection of ground displacement values, we construct a prob-
ability density function (PDF) of ground displacement, from
which we deduce the uncertainty of our measurement. Lastly,
we conduct a realistic computer graphics simulation of a real-
life earthquake signal, demonstrating the feasibility of using
stereo videos to recover sub-millimeter displacement signals,
with associated uncertainties, from a moving airborne plat-
form.

2 THEORY

We aim to passively measure ground displacement, without
touching the ground, and obtain an uncertainty estimate of our
measurement. In this section, we provide a brief summary of
how stereo vision to acquire a ground displacement measure-
ment with associate uncertainty. The stereo vision theory we
summarize is common in standard computer vision literature
(Szeliski, 2011). Stereo videos are represented as a sequence
of frames taken from two offset cameras (left and right), as
shown in Figure 1. This geometry allows one to acquire the
distance to points viewed by the stereo cameras using geomet-
ric relations based on similar triangles and triangulation.

We begin by defining the origin of three coordinate
frames representing the origins of the world, left camera, and
right camera. It is our goal to consistently represent a PDF of
ground position in the world coordinate frame using images
from stereo cameras. In the world coordinate frame, we de-
note the world and left camera origin as “o0,, = [0,0,0]7
and “o; = [0,0,—h]7, respectively. We adopt the notation
where preceding superscripts denote the coordinate frame of a
point and subscripts denote the label of a specific point as w,
[, and r for the world, left camera, and right camera coordi-
nates, respectively. The z-axis of the world coordinate frame
points down, a left camera is placed at a height h above the
world origin. The right camera origin is placed a distance b
away from the left camera in the x-direction and is noted by
‘o, = [b,0,0]. We represent transformations between an ar-
bitrary coordinate system a to another coordinate system b us-

ing a4 x 4 matrix 2H. This matrix may be obtained by aug-
menting the rotation matrix from coordinate system a to b,
denoted gR, with the origin of « in b, denoted btaprg

b b
aR ta or
JH= [ o 1 "} : (1)

We use a homogeneous point representation in order to apply
rotation and translation of a point using a single matrix-vector
multiplication. A point x in 3D space may be represented in
homogeneous coordinates as a four-element point X by ap-
pending a fourth arbitrary element to x. We represent a point
x in homogeneous coordinates using the notation X, and note
that homogeneous coordinates that are scalar versions of one
another are considered equivalent points in 3D space. We may
obtain the original coordinate from the homogeneous coordi-
nate by dividing by the fourth element:

L1 1
T4
~ i)
X = —»x=|22]. (2)
z3 z5
T4 T4

With homogeneous coordinates, we can transform the right
camera origin from the left camera frame to the world frame
by

v, = YH's,. 3)

In general, a point in the right camera frame is transformed
into the world coordinate frame using

Y% ="H"x. @

Stereo vision allows us to determine the 3D location of
a point p observed using the left and right cameras. We can
represent the point in the left or right coordinate frames as
'p = [X, Y, 2" or "p = [Xy, Y, Z-]7, respectively. We
note that Z; = Z, = Z since the camera origins are only
separated in the x-direction of the right camera frame. Using
stereo vision, we find "p then transform the point to the world
coordinate frame using “p = ;YH "p. The 3D location of the
point "p is found using the pixel coordinates where the point
is observed in the left and right cameras. We denote these pixel
coordinates as (z;, y;) and (z,,y,) for the left and right cam-
era, respectively. Projecting a 3D point, such as "p, onto a 2D
image can be described using a pinhole camera model, which
assumes that all 3D points project onto the image plane of a
camera through a single point, or pinhole. The model is ap-
propriate to use when a camera has been calibrated to remove
lens distortion, which is commonly performed on images and
(we assume that all images used in this paper have already
been calibrated). Figure 1 shows a point projecting onto the
left and right image planes using the pinhole camera model.
We use similar triangle geometry to express the left and right
x-pixel coordinates of the point as a function of the camera



Airborne seismic monitoring using stereo vision 3

Figure 1. A schematic of stereo cameras viewing the ground from above. The two cameras have optical axes that are aligned but separated by a
distance b. Both cameras have a focal length of f. The dashed paths show where a point on the ground projects on the left and right cameras. Note
that the cameras do not have to be aligned with the ground surface, however the recovered depth Z is measured from the cameras orthogonal to the

lines connecting the pinholes.

focal length f, in pixels, and the distance to the point Z
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The shift of the 3D point, as observed by left and right cam-
eras, known as disparity, is then

:fX'r_.f(XT_b):ﬁ (6)
A Z

We note that the shift is an integer since the pixel coordinates
are integers. The distance, in the z-direction extending from
the cameras, can be used to deduce the x and y-coordinates of

r~

p

d=xz, — a1

X, — 2Ty
! @)
v, = 2y
' f

Finally, the 3D point in the right camera coordinate system can
be transformed into the world coordinate frame by converting
to homogeneous coordinates and applying a coordinate trans-
formation ' H

X
p= Y| 2> "P="H"D. ¥
Z

The pseudocode in Algorithm 1 outlines how stereo vision is
used for recovering ground motion.

Algorithm 1 Computing point location PDF from stereo im-
ages

Let f denote the focal length of the camera (in pixels)
Let b denote the left and right camera separation
Let superscript r denote right camera coordinate frame
Let superscript w denote world camera coordinate frame
Let ;”H denote the coordinate transformation from the right
camera to world coordinates
for each frame in frames do
for each pixel in frame do
Let (z, y) denote the pixel coordinates in this frame
Let "p = [X,Y, Z]7 denote the recovered 3D point
coordinates on the ground
Compute pixel disparity d at (z, y)
Compute%Z:%ﬁX:%%Y:%% "p
Compute point location “p = *H"p
end for
Compute ground location histogram using all “p in this
frame
Compute ground location PDF from the histogram for
this frame
end for

Determining the 3D world coordinates of a point “p
therefore requires us to know the camera separation b, the fo-
cal length of the camera f, the disparity d of points, and the
coordinate transformation ~ H. It is common for the camera
separation and focal length of a stereo system to be known.
However, it is more difficult to know the disparity and coordi-
nate transformation than b and f.
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The disparity may be found using a variety of methods. In
general, there are two main categories of disparity algorithms
that use sparse or dense point correspondence. Sparse methods
track a limited number of features in an image and have been in
development since the 1970’s (Szeliski, 2011), whereas dense
methods compute disparities for every pixel within an image
(Scharstein and Szeliski, 2002). The theory we adopt here
is applicable regardless of the disparity method chosen. We
choose to determine the disparity using a dynamic program-
ming solution for finding shifts in images known as Smooth
Dynamic Image Warping (SDW) (Arias, 2016). SDW extends
Dynamic Image Warping (DIW) (Hale, 2013) by recovering
sub-sample shifts. We choose the SDW algorithm because it
provides dense and sub-pixel disparity values for each pixel
in an image. As a dynamic programming approach to finding
shifts between two images, SDW works by minimizing a con-
strained nonlinear optimization problem. In summary, SDW
determines shift values between two images that may be used
to ‘warp’ one image to the other. In our context, we determine
shifts between the left and right stereo images. Given that the
cameras are only separated in the x-direction, the shift between
images will only be in the x-direction. Therefore, we estimate
1D shifts between the rows of left and right images. We note
that estimating 2D shifts provides more constraints to the opti-
mization problem and may be beneficial; however, we use 1D
shifts in this paper for simplicity and computational efficiency.
We can denote the image rows as vectors 1 and r where each el-
ement of 1, denoted [;, is approximately an elementin r, 7; 14,

li = riga, fori=1,..., W, “

where W is the width of the image in pixels and d; denotes the
disparity used in equation 6 to determine the 3D point which
projects onto pixel 7. We estimate the disparity for all pixels
in a row, and therefore recover a dense set of 3D point coordi-
nates using SDW. In practice, we minimize the error between 1
and a shifted version 1; SDW minimizes absolute error, which
results in shifts that express how each element of r may be
shifted to in order for a match 1. The details of how the SDW
minimization problem is implemented are beyond the scope of
this paper but can be found in (Hale, 2013) and (Arias, 2016).
After finding the disparity using SDW, we obtain the 3D lo-
cation of a point represented in the right camera coordinate
frame from equations 6 and 7.

The cameras may be translating and rotating relative to
the world coordinate frame while the stereo video is being
recorded, for example, if the cameras are mounted on a hov-
ering drone. It is necessary to examine the 3D points in a con-
sistent coordinate frame, therefore we require the coordinate
transformation ,”H for each frame of the video. This coor-
dinate transformation may be provided from an onboard IMU,
which uses accelerometers and gyroscopes to monitor position
and orientation. In addition, other sensors, such as GPS may
be used to monitor the camera motion during flight.

Many points on the ground are simultaneously viewed by
the stereo cameras, and therefore we may statistically repre-
sent the position of the ground viewed by the system as a
Probability Density Function (PDF). This representation of

the ground assumes that between frames, all points undergo
the same translation. A PDF of ground position is therefore
available for each frame in the stereo video, which provides
quantitative uncertainty information of the ground position.
The PDFs change between frames as the ground and cameras
move, however we may isolate the ground and camera motion
by measuring and removing the camera motion. To remove
the camera motion, we perform a coordinate transformation
from right camera to world coordinate frame using equation 1
to form ;" H for a particular frame. We note that the transfor-
mation matrix ;" H contains camera motion information that
is independent of the ground motion e.g. from an IMU. After
camera motion is removed, we obtain a PDF representing the
position of the ground in a consistent coordinate system as it
varies with time. Summary statistics, such as the mean, may be
computed from the PDF to provide us with a ‘trace’ that repre-
sents ground motion. Similarly, we may compute the variance
of the PDF as a proxy for the uncertainty of our measurements.
Therefore measurements of the ground position, with associ-
ated uncertainty, are available from images of the ground taken
remotely.

We can analytically determine how error in projected
pixel locations translates into disparity error. We may quan-
tify the change in disparity given a small change, or error, in
the pixel locations Az, or Azx; using total derivatives, which
for a function z = f(x,y) can be approximated as

Az ~ ﬁAw—l— é—fAy, (10)
ox oy
where small changes in = and y are denoted as Az and Ay,
respectively. Considering the disparity, d(x,, x;), from equa-
tion 6 we can compute the error

5d 5d
Ad = Az, + —Ax
oz, T an
= Az, — Axy,

where Az, and Ax; are errors in the point projection on the
right and left camera, respectively. We expect the errors in the
left and right cameras to be independent, as they were taken
from independent cameras, and assume the errors are zero
mean. The expected value of the disparity error then becomes:

wa = E[Ad] = E[Az, — Az = E[Az,] — E[Az;] = 0.

12)
The variance of the disparity error can be computed by lever-
aging equation 12 and using the pixel error independence as-
sumption to obtain

05 = E[(Ad — pg)?] = 07 + o5 13)

We conclude that the mean of the disparity error to be zero
given independent and zero mean errors in the left and right
camera pixel projection coordinates. The variance of the dis-
parity is then the sum of the variance of the errors in the left
and right cameras.

The depth estimate error given an error in disparity de-
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fined in equation 6 is

0z fb

AZ = 5d Ad=— 2

We see that the absolute value of the distance error is propor-
tional to %. Proportionally, this result implies that an increase
in camera separation (b) or focal length (f) increases the dis-
tance error for a given disparity (d). However, the disparity
dominates the depth error as d%, implying that large dispari-
ties can drastically decrease the depth error. The mean of the
error in depth Z can be found by leveraging equation 14 and

simplifying the AZ term,

Ad. (14)

wz = Elaz) = -2 piad = o, (s)

while the variance of the error in depth Z is,
b\ 2
0y = E[(AZ — puz)*] = (%) o3 (16)

The standard deviation in the depth error is proportional to the
quantity (%)2. This quantity is dominated by the effects of
d™*; if the disparity increases, then the variance in the depth
error rapidly decreases. While mean and variance summarize
the behavior of the distance error, a more complete representa-
tion of the displacement is represented using PDF’s, as demon-
strated in the next section.

3 NUMERICAL EXAMPLES

We asses the feasibility of measuring ground motion with
a drone-mounted stereo vision system using realistic virtual
simulations. Virtual simulations provide flexibility and precise
control of drone and ground motion, allowing us to simulate
various drones, cameras, and ground motion signals. By using
simulations, we know true ground and camera motion, can be
compared to the recovered motion using stereo vision. We sim-
ulate two cameras separated by b = 30 cm in the x-direction
of the left camera frame. Each camera has a focal length of
4.15 mm, a resolution of 1280x720 pixels, and an image sen-
sor element size of 3.75 microns. These camera parameters
are feasible and common, and were chosen to reflect current
smartphone cameras. The cameras view a simulated moving
ground surface from a height of 2 m, a reasonable height for a
drone hovering above the ground.

The vibrating ground surface is described by texture and
topography representing cracked clay ( Figure 2 ). We note that
the appearance of cracks in the images intentionally does not
reflect the true cracks in the ground surface. The true cracks
on the ground surface are characterized by Vorinoi noise and
have a fractal-like pattern, as shown in the recovered dispar-
ity image (Figure 2(c)). We intentionally separate the appear-
ance of the ground from its true topography to show that the
recovered disparities are influenced by the topography, rather
appearance.

An earthquake signal (Figure 3) recorded at USGS sta-
tion OKO034 in the fall of 2016 near Cushing, Oklahoma is
used to displace the surface in three dimensions (Center for

Engineering Strong Motion Data, 2016). We note that the dis-
placement of the signal is on the order of 3 mm, with many
displacements below 1 mm. The vibrating ground surface is
observed using the virtual stereo cameras, which hover above
the ground (see Figure 4) as if mounted on a drone. In the
following, we present recovered ground displacement results
with and without drone motion.

We first show displacement recovery when the drone is
stationary. Videos are rendered for both the left and right cam-
eras as the ground moves in three dimensions according to the
ground position curves shown in Figure 3. Dense disparity val-
ues are computed at each time step, which are used to construct
a PDF representing the ground location as viewed from the
stereo cameras (see Algorithm 1. When estimating disparities
using the SDW algorithm, we use a sub-sample precision of
1 : 50 and a strain range of +0.02. The strain range chosen
is low and narrow because of prior knowledge we posses: the
disparities we seek are smoothly varying along a row. Setting a
wider strain range allows for more rapidly varying shifts along
a row, and may be more appropriate when viewing a rugged
surface. Here, the simulated ground is relatively flat, thus im-
plying that the observed shifts vary smoothly.

The sub-sample precision chosen is sufficiently small to
recover minute shifts between left and right images. We note
that a higher sub-sample shift precision may be used, at the ex-
pense of an increase in computational memory requirements,
however one may not observe benefits beyond a certain sub-
sample shift precision value (Arias, 2016). In contrast, choos-
ing too low of a sub-sample shift precision value may lead to
poor shift recovery. We test larger sub-sample precision values
and found little benefit beyond %. The sub-sample shift value
is best estimated by performing disparity computations on the
first frame of the video and examining the recovered shifts. If
the recovered shifts vary wildly, or seem discontinuous, then
a higher degree of sub-sample precision may be required. We
note that if computational time and memory is not an issue,
then one may set the value of sub-sample shift very high with-
out risking the accuracy of recovered shifts. An example of re-
covered disparities for the first frame is shown in Figure 2(c).
Note that the recovered disparities are somewhat smooth along
arow, and they resemble cracks which reflect the cracks in the
simulated ground surface.

Figure 5(a) shows the recovered point location PDF in
world coordinate frame for each frame in the video. The PDF
gives insight on the statistical characteristics of our measure-
ment. The PDF is smooth, broad, and contains horizontal
bands. The horizontal banding in the recovered PDF is present
due to discrete disparity values recovered using SDW, which
are of limited precision. Regardless, we observe in Figure 6(a)
that the mean of the PDF, after subtracting the initial distance
to the ground, traces the true displacement of the ground sur-
face. The true and observed displacement curves are on top of
one another, which shows that the signal has been recovered
well. The error, for this example, has a standard deviation of
0.011 mm. The standard deviation of the error is within a hun-
dredth of a millimeter; five orders of magnitude less than the
height at which the measurement was taken (h=2 m).



6 T Rapstine & P. Sava

~
<}
S
~
o
S

w
<}
S

300

IS
S
S
»
S
S

-pixel location
y-pixel location
-pixel location

y
o v
S o
S S
o v
S o
S oS

Y-

~
S
S
~
S
S

e
600 800 1000 1200

[ 200 400 600 800 1000 1200
x-pixel location x-pixel location x-pixel location

() (b) ©

0 200 400 600 800 1000 1200

Figure 2. Appearance of (a) left and (b) right images recovered for one frame and (c) associated disparity image. The images resemble a cracked
clay surface, and are laterally shifted versions of one another due to the stereo camera setup. The topography of the simulated ground surface is
intentionally different from the image texture, showing that ground topography dominates the recovered disparity appearance.
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Figure 3. Earthquake signal recorded in the fall of 2016 by USGS station OK034 near Cushing, Oklahoma. The red, blue, and green curves show
the ground displacement in X, y, and z directions.

We repeat the experiment (Figure 5(a)) with a moving resembles real-life motion we measured from a DJI Matrice
drone and the same ground motion signal. When the drone is 100 drone, instructed to hover at a fixed position for about two
moving, the range of disparity values we must search through minutes. The time spanned by the earthquake signal in Fig-
using SDW is considerably larger, making disparity estimates ure 3 is roughly two minutes, as shown in Figure 4. The drone

more computationally costly. We simulate drone motion which moves a considerable amount during the simulation, roughly a
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Figure 4. Recorded drone motion used in hovering drone simulation. We note that the drone motion is three orders of magnitude larger than the

signal we wish to recover in Figure 3.

quarter of a meter; this variation is orders of magnitude larger
than the earthquake signal we wish to recover. The recovered
PDF of point location in world coordinates for this second ex-
periment is shown in Figure 5(b). We note that the banding
observed in the PDF for the first experiment is not present
in the PDF for second experiment because of the coordinate
transformation we use to correct for drone motion. However,
we see their remnants as scattered peaks in the recovered PDF
which seem to mimic the vertical motion of the drone. The er-
rors present when the drone is moving are larger than when the
drone is stationary, we observe an error standard deviation of
0.30 mm.

We expect the error to deteriorate when disparities are
small, i.e. when the drone is farther away from the ground.
Thus, the displacement error we obtain when the drone is
moving depends on the drone motion. We confirm this ex-
pectation by showing the drone height and absolute error for
vertical ground motion in Figure 7. As the drone approaches
the ground, the effective area represented in a pixel increases

and the disparity estimates are larger. As previously described
in the Theory section, we expect the error in vertical posi-
tion (equation 16) to drastically improve for larger disparities.
Based on our results, we conclude that a stereo camera can
feasibly measure earthquake-like sub-millimeter ground mo-
tion. The simulation parameters we use reflect realistic drone
and camera parameters.

4 CONCLUSIONS

The drone motion, earthquake motion, and camera specifi-
cations used in this work reflect real-life data. We assume
known drone position during acquisition, which may be avail-
able from IMUs and GPS. A dense disparity algorithm leads
to many estimates of ground position at a given time, in turn
allowing access to a statistical representation of ground posi-
tion. We note that sub-pixel disparity estimates, provided by
the disparity algorithm, are necessary to characterize the sub-
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Figure 5. Recovered ground position PDF with (a) no drone motion and (b) realistic drone motion. White curves show the mean of each PDF, which

resemble the vertical ground motion from the simulated earthquake.

tle earthquake ground motions. The strategy for disparity es-
timates used here dose not provide point correspondence in
time, and therefore does not allow us to recover lateral ground
displacement. Future and ongoing work focuses on augment-
ing our current method to recover lateral ground displacement.
We conclude that drone-borne stereo cameras can potentially
be used to measure seismic signals, with associated uncertain-
ties.
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Figure 6. Recovered ground displacement signal (blue) compared with true displacement (green) (a) without and (b) with drone motion. Red curves
show the absolute difference between recovered and true ground motion. Zoomed plots for (a) and (b) are shown in (c) and (d), respectively. Drone
motion influences the recovery of the input signal.
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Figure 7. Relationship between signal error and drone height. The error is larger when the drone is farther away from the ground, which explains

the errors in the recovered signals in Figure 6(d).
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