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ABSTRACT

Incorporating anisotropy and elasticity into least-squares migration (LSM) is an im-
portant step towards more accurate amplitudes in seismic imaging. In this context,
we derive linearized modeling and migration operators based on the energy norm for
elastic wavefields in arbitrary anisotropic media. We use these operators to perform
anisotropic least-squares reverse time migration (LSRTM) and generate scalar images
that represent subsurface reflectivity and correctly predict observed data without costly
decomposition of wave modes. Imaging operators based on the energy norm have no
polarity reversal at normal incidence and remove backscattering artifacts caused by
sharp interfaces in the Earth model, thus accelerating convergence and generating im-
ages of higher quality when compared to images produced by conventional methods.
With synthetic and field data experiments, we show that our elastic LSRTM method
generates high-quality images that predict the data at receivers locations for arbitrary
anisotropy, without the complexity of wave-mode decomposition and with high con-
vergence rate.

Key words: anisotropy, least-squares migration, multicomponent, elastic, reverse time
migration

1 INTRODUCTION

The search for more reliable seismic images and additional
subsurface information, such as fracture distribution, drives
advances in seismic acquisition, such as larger offsets, wider
azimuths and multicomponent recording. All of these ad-
vances facilitate incorporating anisotropy and elasticity into
wavefield extrapolation and reverse time migration (RTM),
which is the state-of-art wavefield imaging algorithm suit-
able for complex geological structures (Baysal et al., 1983;
McMechan, 1983; Lailly, 1983; Levin, 1984; Chang and
McMechan, 1987; Hokstad et al., 1998; Zhang and Sun, 2009;
Farmer et al., 2009). Although seismic acquisition improves
with such advances, it always involves practical limitations,
such as finite and irregular data sampling, that negatively im-
pact anisotropic elastic wavefield migration. Consequently,
this type of migration often leads to images with poor resolu-
tion and unbalanced illumination due to such practical acquisi-
tion constraints, even though image amplitudes are more reli-
able compared to acoustic and/or isotropic imaging (Lu et al.,
2009; Phadke and Dhubia, 2012; Hobro et al., 2014; Du et al.,
2014).

A common solution to these limitations is the implemen-
tation of least-squares reverse time migration (LSRTM), which

iteratively attenuates artifacts caused by truncated acquisition
and provides high-quality images that best predict observed
data at receiver locations in a least-squares sense (Chavent and
Plessix, 1999; Nemeth et al., 1999; Kuhl and Sacchi, 2003;
Aoki and Schuster, 2009; Yao and Jakubowicz, 2012; Dong
et al., 2012). However, to overcome these issues from acqui-
sition and to exploit the advantages of more realistic wave ex-
trapolation, some authors propose LSRTM that accounts for
multiparameter Earth models, which can either incorporate
solely anisotropy (Huang et al., 2016), elastic (Duan et al.,
2016; Feng and Schuster, 2016; Xu et al., 2016; Alves and
Biondi, 2016; Ren et al., 2017), or viscosity effects (Dutta
and Schuster, 2014; Sun et al., 2015). For instance, the visco-
acoustic and pseudo-acoustic implementations define Earth re-
flectivity in terms of contrast from a single model parameter
(Dutta and Schuster, 2014; Huang et al., 2016) or in terms of a
scalar image based on conventional cross-correlation between
wavefields (Sun et al., 2015). Alternatively, elastic LSRTM
implementations in isotropic media provide multiple images
that are defined in terms of cross-correlation between decom-
posed wave modes (Duan et al., 2016; Feng and Schuster,
2016; Xu et al., 2016; Alves and Biondi, 2016). However,
wave-mode decomposition in anisotropic media is costly and
not as straightforward as in isotropic media; and therefore,
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anisotropic wave-mode decomposition remains a subject of
ongoing research (Yan and Sava, 2009; Zhang and McMechan,
2010; Yan and Sava, 2011; Cheng and Fomel, 2014; Sripanich
et al., 2015; Wang et al., 2016).

Incorporating both elasticity and anisotropy into LSRTM
is possible with elastic wavefield imaging using the energy
norm (Rocha et al., 2017). This type of imaging exploits re-
alistic vector displacement field extrapolation within a mul-
tiparameter anisotropic and elastic Earth model, and gener-
ates scalar images of the subsurface without costly decompo-
sition of wave modes. As opposed to more conventional imag-
ing conditions, the elastic imaging condition based on the en-
ergy norm exhibits no polarity reversal at normal incidence,
and computes an appropriate correlation between wavefields
that attenuates low-wavenumber artifacts caused by waves that
do not correctly characterize subsurface reflectivity (e.g. wave
backscattering from salt interfaces). Such artifacts are harm-
ful to the LSRTM inversion and retard convergence because
they do not accurately characterize reflections in the subsur-
face. One outstanding issue with energy imaging is the phys-
ical interpretation of the scalar image; we interpret the result-
ing amplitudes as a measure of energy transfer between inci-
dent and reflected wavefields, in contrast with more conven-
tional images that represent amplitude conversion for different
incident and reflected wave modes. As for any other wave-
field migration method, its quality suffers from the acquisi-
tion limitations discussed earlier. Therefore, we define a lin-
earized modeling operator that generates anisotropic elastic
scattered wavefields, and we propose a LSRTM method that
uses the energy image as a proxy for the reflectivity model.
This LSRTM method is ideal to generate high-resolution im-
ages that correctly predict observed multicomponent data,
without the shortcomings of different wave modes and full-
wavefield phenomena present in anisotropic elastic wavefields.
We demonstrate all the benefits of the method with synthetic
and field data experiments.

2 THEORY

We can express elastic wavefield migration with mathematical
operators such that

m = LTdr , (1)

where LT is the migration operator, dr is single-scattered mul-
ticomponent data recorded at receiver locations, and m is an
image or a set of images associated with the Earth reflectivity.
The operator LT involves backpropagation of dr through an
Earth model generating a receiver wavefield Ur , and the appli-
cation of an imaging condition comparing Ur with the source
wavefield Us (extrapolated from a source function and loca-
tion). For instance, an elastic imaging condition can involve
decomposition of the wavefields Us and Ur into separated
wave modes and the application of crosscorrelation between
wave modes (Yan and Sava, 2007). One generally considers
wavefield migration as the adjoint operator of linearized mod-
eling (also known as single-scattering modeling) (Claerbout,

1992). Therefore, L is the linearized modeling operator such
that

dr = Lm , (2)

and generates single-scattering data dr at receiver locations
using an image containing reflectors that act as sources under
the action of the background (or source) wavefield Us (em-
bedded in the operator L).

Therefore, we define m as reflectivity that depends on
a particular imaging condition and is not necessarily defined
in terms of contrasts in the Earth model. The same principle
applies to the linearized modeling operator L, which we define
as an adjoint operator of a migration operator that utilizes a
certain imaging condition, and L is not necessarily related to
the physics of single scattering.

2.1 Energy-norm linearized modeling and migration
operators

For two anisotropic elastic source and receiver wavefields,
which are functions of space x and time t Us (x, t) and
Ur (x, t), we can form an image using the energy imaging
condition (Rocha et al., 2017):

IE (x) =
∑
t

[
ρU̇s · U̇r −

(
c
¯̄
∇Us

)
: ∇Ur

]
, (3)

where ρ(x) is the density of the medium and c
¯̄

is the second-
order stiffness tensor. The superscript dot applied on the wave-
fields indicates time differentiation and ∇ is the spatial gra-
dient. The symbol : indicates Frobenius product between two
matrices resulting in a scalar quantity (Golub and Loan, 1996).
A more compact form of equation 3 utilizes the so-called en-
ergy vectors, which are defined as

�Us =
{
ρ
1/2U̇s,−c

¯̄
1/2(∇Us)

}
, (4)

�Ur =
{
ρ
1/2U̇r,−c

¯̄
1/2(∇Ur)

}
. (5)

Analyzing the terms in equations 4 and 5, one can note that
the energy vectors contain twelve components, three from
the terms ρ1/2U̇s,r and nine from c

¯̄
1/2(∇Us,r). We can also

define � as the energy operator containing derivatives and
medium parameters applicable to a multicomponent wave-
field. Using the definition of energy vectors, the imaging con-
dition in equation 3 becomes

IE =
∑
t

�Us ·�Ur . (6)

In order to obtain the adjoint operator associated with the
imaging condition in equation 6, we rewrite the expression in
operator form:

m = (�Us)T �Ur . (7)

We can write the elastic wavefields Us and Ur in terms of a
sequence of operators applied to the source function ds and to
the receiver data dr , respectively. Firstly, we implement injec-
tion of the multicomponent source function and receiver data
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into the Earth model by operators Ks and Kr , respectively.
Secondly, we apply forward and backward elastic wavefield
extrapolation operators E+ and E−. Hence, we express the
wavefields by Us = E+Ksds and Ur = E−Krdr , and we
can rewrite equation 7 as

m = (�E+Ksds)T �E−Krdr . (8)

Equation 8 is in the form m = LTdr , where

LT = (�E+Ksds)T �E−Kr = (�Us)T �E−Kr . (9)

Therefore, this chain of operators LT represents the migration
based on the energy norm. We can obtain the operator L (ad-
joint of LT) if we apply the adjoint for each individual operator
and reverse the order of operators:

L = KT
rE+�

T (�E+Ksds) = KT
rE+�

T�Us , (10)

where ET
− = E+. This chain of operators L represents the lin-

earized modeling based on the energy norm, involving extrac-
tion of multicomponent single-scattered data at the receiver
locations (KT

r), and elastic wavefield extrapolation (E+) from
virtual multicomponent sources computed by �T�Usm.

To elucidate the linearized modeling based on the energy
norm, here are the steps involved in computing the scattered
data at receivers (dr):

(i) Inject the source wavelet ds by utilizing Ks.
(ii) Extrapolate (E+) the injected source Ksds, generating

the background wavefield Us;
(iii) Compute �Us, a twelve-component vector field

shown in equation 4;
(iv) Multiply each component of �Us by the scalar reflec-

tivity model m;
(v) Compute �T�Usm, a three-component virtual source

field;
(vi) Extrapolate (E+) the virtual source �T�Usm, gener-

ating the scattered wavefield Ur;
(vii) Extract data at receiver locations dr by applying KT

r

to the scattered wavefield.

In Appendix A, we represent all individual operators in-
volved in L and LT pictorially in order to illustrate the se-
ries of increases and reductions in dimensionality through-
out our linearized modeling and migration. Also, in Appendix
B, we show all the components of the virtual source term
�T�Usm explicitly for a 2D vertical transversely isotropic
(VTI) medium.

2.2 Energy-norm elastic least-squares migration

The linearized modeling operator L and its adjoint enables us
to compute an image that minimizes the objective function

E (m) =
1

2
‖Lm− dr‖2 . (11)

The reflectivity that minimizes equation 11 is mathematically
described as

mLS =
(
LTL

)−1

LTdr . (12)

The gradient of the objective function in equation 11 with re-
spect to a model at a given iteration i is

gi =
∂E (d,mi)

∂mi
= LT (Lmi − dr) . (13)

The model update at each iteration can be a scaled version of
the gradient, or ideally can incorporate an approximation of
the Hessian operator H =

(
LTL

)
(Aoki and Schuster, 2009;

Tang, 2009; Dai et al., 2010):

mi+1 = mi −H−1gi , (14)

For all numerical experiments shown in this paper, we set the
initial model to be zero and apply an illumination compensa-
tion on the gradient at every iteration. This illumination com-
pensation computed from the wavefields is considered to be an
approximation of the Hessian operator (Rickett, 2003; Plessix
and Mulder, 2004; Du et al., 2012). We use the energy norm
of the source wavefield at every spatial location as our illumi-
nation compensation factor:

hi (x) = ‖Us‖2E = �Us ·�Us , (15)

3 EXAMPLES

The following numerical examples demonstrate how the lin-
earized modeling and migration operators based on the energy
norm behave during LSRTM. Firstly, we perform an experi-
ment with a single flat reflector to convey some intuition about
how the method works; secondly, we show an experiment us-
ing a realistic synthetic Earth model containing many reflec-
tors and structures to test the method in more complex geolog-
ical settings with sharp interfaces that create backscattering
artifacts in conventional imaging methods; finally, we validate
the method by applying it to a North Sea field dataset.

3.1 Single-reflector model

We demonstrate energy-based LSRTM using a model de-
fined by vertical transversely isotropy (VTI) with a reflector
at z = 0.55km. The model parameters are ρ = 2.5kg/cm3,
VP0 = 2.2km/s (P-wave velocity along the symmetry axis),
VS0 = 1.3km/s (S-wave velocity along the symmetry axis),
and Thomsen parameters ε = 0.4 and δ = 0.3 (Thom-
sen, 1986). The reflector consists of the following contrasts:
∆ρ = 0.7kg/cm3, ∆VP0 = 0.6km/s, and ∆VS0 = 0.5km/s.
Figure 1(a) shows the density model and the acquisition ge-
ometry that consists of 10 sources and a line of receivers at the
surface. We create a scalar reflectivity based on the contrast
of the Earth model (Figure 1(b)). We generate shot records
by two different methods: (a) full-wavefield modeling, which
uses the Earth model with contrasts as conventionally imple-
mented to generate synthetic elastic data; (b) linearized mod-
eling based on the energy norm, which applies the operator
in equation 10 to the reflectivity from Figure 1(b) using the
background Earth model (without contrast). We migrate both
synthetic datasets using the energy imaging condition from
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equation 3. Figures 1(c) and 1(d) show the stacked RTM im-
ages that use the full-modeled data and linearized-modeled
data, respectively. We also compute 10 iterations of LSRTM
for both datasets: Figures 1(e) and 1(e) show the final stacked
LSRTM images that use the full-modeled data and linearized
modeled data, respectively. By comparing the LSRTM images
with their RTM counterparts, one can observe the better qual-
ity of LSRTM images: the artifacts caused by the truncated
acquisition are attenuated and the amplitudes are closer to the
true reflectivity.

One can note that the RTM and LSRTM images using the
linearized modeled data have less artifacts than the ones us-
ing the full-modeled data. To explain why, we show both syn-
thetic datasets in Figures 2(a) and 2(b). From early to late ar-
rival times, the three visible events in each dataset correspond
to (1) P-P (apex around t = 0.6s), (2) P-S/S-P (apex around
t = 0.8s), and (3) S-S reflections (apex around t = 0.9s). For
the near offsets, we notice that events in both datasets match
in phase and polarity because only specular reflections exist at
these near offsets. However, since the linearized modeling is
a simplification of full-wavefield modeling, it can only predict
single-scattering events and cannot predict wave phenomena
that are beyond the critical angle, such as head waves, and
these phenomena influence the amplitude of the three events
at the far offsets of Figure 2(a). One can also notice such be-
havior on the data residuals at iteration 10 (Figures 2(c) and
2(d)). The linearized modeling embedded in the engine of
both LSRTM results can only predict amplitude from reflec-
tions events, and cannot match the far-offset amplitudes from
the full-modeled data (Figure 2(c)). Alternatively, by using the
same linearized modeling operator to generate synthetic data,
the data residual (Figure 2(d)) and its related objective func-
tion (Figure 2(e)) decrease substantially more and are close to
zero at the last iteration, as our operators are proper adjoints
of each other, and can perfectly match the dataset containing
only reflections after several iterations.

3.2 2007 BP TTI anisotropic benchmark model

We use a portion of the 2007 BP tilted transversely isotropic
(TTI) benchmark model to test the method in a more compli-
cated synthetic model. The original model consists of VP0, ε,
δ, and the tilt of the symmetry axis at every point (ν); we cre-
ate VS0 and ρ from VP0 (Figure 3). The experiment geometry
consists of 55 pressure sources equally spaced in the water
at the surface (z = 0.092km), and a line of multicomponent
receivers at every grid point at the water bottom, which varies
between the depths of z = 1.0km and z = 1.4km. Similarly to
the preceding example, we generate two different datasets by
(a) full-wavefield modeling, using the density model with con-
trasts (Figure 3(f)), and (b) linearized modeling, using a con-
stant density model and the reflectivity model in Figure 4(e)
to generate reflections. All other Earth model parameters are
kept the same between the two experiments.

We obtain energy RTM and LSRTM images using
linearized-modeled data (Figures 4(a) and 4(c)) and full-
modeled data (Figures 4(b) and 4(d)). We apply a power gain

with depth on the RTM images for a fair comparison with
LSRTM images, since RTM images commonly have weaker
amplitudes for greater depths and these amplitudes can easily
be compensated by such gain. Notice that artifacts in the shal-
low part (mainly caused by the limited acquisition) are attenu-
ated, and the deep reflectors as well as the salt flanks are bet-
ter illuminated in the LSRTM images compared to their RTM
counterparts. Both LSRTM images contain sharper reflectors
and are closer to the assumed true reflectivity models shown
in Figures 4(e) and 4(f). For the LSRTM images, one can ob-
serve low-wavenumber artifacts inside the salt because most
of the waves in this region do not scatter towards the receivers
due to this particular experiment, which images only one side
of the salt body. These events create artifacts that accumulate
over iterations, and they are part of the null space for the in-
version, i.e., they do not predict any reflections in the observed
data. Although such artifacts do not represent actual reflectors,
they are not harmful to the inversion process since they reside
in the null space of the reflectivity model and do not mask any
reflectors inside the salt body.

In Figures 5(a) and 5(b), we show the observed data at
a particular shot location (x = 41.4km) containing offsets
up to 8km for linearized and full-wavefield modeling, respec-
tively. The corresponding data residuals after 20 iterations are
shown in Figures 5(c) and 5(d), which are diminished when
compared to the original datasets. The objective functions for
both experiments are shown in Figure 5(e). As expected, the
objective function for the inversion using the dataset generated
with the linearized modeling operator itself converges to zero,
as our migration and modeling operators are proper adjoints
of each other. The objective function for the experiment with
full-modeled data decreases substantially and can potentially
decrease more if more iterations are allowed, since the objec-
tive function at iteration 20 retains a significant slope, as seen
in Figure 5(e). However, we expect the rate of convergence to
be smaller over iterations until the objective function reaches a
plateau, because our modeling operator cannot predict events
beyond single-scattering in full-modeled data. In addition, dif-
ferently from the single-reflector preceding example, several
reflectors in this Earth model cause multiple scattering events
during full-wavefield modeling that are also not predicted by
our linearized modeling operator. All events that exist in the
data and are not predicted by our operator might form artifacts
in the image, as for any other migration methods applied on
data that contains multiple reflections, turning waves, etc.

3.3 Volve OBC real dataset

We apply the method to a field dataset acquired by an ocean-
bottom cable (OBC) in the Volve field, located in the North Sea
(Szydlik et al., 2007). Although the original dataset is 3D, we
use a 2D section near the central crossline to reduce computa-
tional cost. The Earth model is elastic VTI and the correspond-
ing parameters are shown in Figure 6. The prominent layer
around z = 3 km is a chalk layer that corresponds to the hy-
drocarbon reservoir. The dataset provided was pre-processed
to retain only the down-going pressure component, and a par-
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(a) (b)

(c) (d)

(e) (f)

Figure 1. (a) Density model used in full-wavefield modeling, and (b) reflectivity model used in linearized modeling. The acquisition geometry
consists of 10 sources (blue) and a line of receivers (green). Elastic energy RTM image with (c) full-modeled data and with (d) linearized-modeled
data. Elastic energy LSRTM image with (e) full-modeled data and with (f) linearized-modeled data. Note how LSRTM attenuates artifacts caused
by sparse acquisition.

ticular common shot gather for a source at x = 6.3km is
shown in Figure 7(a). We obtain energy RTM and LSRTM im-
ages after 15 iterations, shown in Figures 8(a) and Figure 8(b),
and the corresponding objective function in Figure 7(d). The
LSRTM image exhibits more detailed reflectors compared to
the RTM image, and enhances the amplitudes at the edges of
the model. With a smooth muting of far-offset events, the ob-
jective function decreases substantially reaching 40% of its
initial value at the last iteration. By comparing the modeled
data and residual at the last iteration (Figures 7(c) and 7(b)),
and the observed data (Figure 7(a)), one can note that our lin-
earized modeling operator and the image at the last iteration
predict the main reflections and do not predict events such as
noise, direct arrival, far-offset amplitudes, etc.

4 CONCLUSIONS

We propose an elastic LSRTM method that uses imaging oper-
ators based on the energy norm and delivers a scalar image that
contains attenuated artifacts and explains data at receiver loca-
tions. The absence of strong backscattering artifacts in our re-
sults shows the advantage of our migration operator compared
to its conventional counterparts. Using displacement fields di-
rectly and without costly wave-mode decomposition, our lin-

earized modeling operator generates multicomponent datasets
with a scalar reflectivity that correctly predicts the amplitude
and phase of the reflections in observed data, as illustrated by
the final modeled data and objective functions from our nu-
merical examples. As for any other linearized modeling proce-
dure, events that are not reflections are inaccurately predicted
by our linearized operator, and these events show in the image
as artifacts. Future work involves application of our method to
another multicomponent field dataset that contains both verti-
cal and horizontal displacement components, and to 3D Earth
models.
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(a)

(b)

(c)

(d)

(e)

Figure 2. Vertical- (left) and horizontal- (right) component data from (a) full modeling and from (b) linearized modeling. Data residuals from the
LSRTM images using (c) full modeling and from (d) linearized modeling. (e) Normalized objective functions for inversion using full-modeled data
(blue) and linearized data (red). The far-offset amplitudes from full-modeled data are not correctly predicted by the linearized modeling operator.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. BP TTI model parameters: (a) P-wave and (b) S-wave velocities along the symmetry axis; Thomsen parameters (c) δ and (d) ε along the
symmetry axis; (e) tilt of the symmetry axis (ν); (f) density with contrasts for full-wavefield modeling experiment.



8 Rocha & Sava

(a) (b)

(c) (d)

(e) (f)

Figure 4. RTM images using (a) linearized-modeled data and (b) full-modeled data. LSRTM images after 20 iterations using (c) linearized-modeled
data and (d) full-modeled data. (e) True reflectivity model for linearized-modeled data and (f) Laplacian operator applied on the density model in
Figure 3(f) in order to show contrasts that create reflections in the full-wavefield modeling.
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(a) (b)

(c) (d)

(e)

Figure 5. Vertical component of observed data at a xs = 41.4km obtained by (a) linearized modeling using the reflectivity model in Figure 4(e),
and (b) full-wavefield modeling using density model in Figure 3(f). Vertical component data residuals after 20 iterations for (c) linearized and (d)
full-wavefield modeling experiments. (e) Normalized objective function for experiments using (red) linearized and (blue) full-modeled data.
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(a) (b)

(c) (d)

Figure 6. Volve 2D model parameters: (a) P-wave and (b) S-wave velocities along the vertical symmetry axis; Thomsen parameters (c) δ and (d) ε.

per use the Madagascar open-source software package (Fomel
et al., 2013) freely available from http://www.ahay.org.
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(a)

(b)

Figure 8. Volve experiment: energy (a) RTM and (b) LSRTM images. Reflectors around z = 3.0km become sharper, especially at the edges of the
image. The arrows indicate reflectors that become more visible in the LSRTM image relative to RTM.
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Appendix A

Energy-based modeling and migration operators

The energy image m (x) is obtained by the expression

m = (�Us)T �Ur , (A.1)

which can be represented schematically as

I

=

� Us

T

� Ur

The operator � turns a three-component displacement field
into a twelve-component vector field that contains spatial and
temporal derivatives. Equation A.1 also implies summation
over time. We represent this increase in dimensions pictori-
ally by making the matrix of � considerably larger than the
wavefield vectors Us and Ur . Using extrapolator and injec-
tion operators, as explained in the body of the paper, we have

m = (�E+Ksds)T �E−Krdr . (A.2)

m

=

� E+ Ks ds

T

� E− Kr dr

In compact form, we can rewrite equation A.2 as

m = LTdr . (A.3)
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Linearized modeling is defined as

dr = Lm . (A.4)

Based on equation A.2, we can rewrite equation A.4 as

dr = KT
rE

T
−�

T�Usm , (A.5)

which is represented schematically as

dr

=

KT
r E+ �T � Us m

or

dr = KT
rE+�

T� (E+Ksds)m . (A.6)

represented as

dr

=

KT
r E+ �T � E+ Ksds m

The virtual multicomponent source computed for the genera-
tion of the scattered wavefield is represented by the chain of
operators �T� (E+Ksds)m = �T�Usm:

Appendix B

Multicomponent virtual source for 2D VTI modeling

We can write the energy imaging condition (equation 3) for
a two-dimensional vertical transversely isotropic medium in
matrix notation as

IE (x) = ρ
[
U̇s

1 U̇s
3

] [U̇r
1

U̇r
3

]
−[

C11U
s
1,1 + C13U

s
3,3 C55

(
Us

1,3 + Us
3,1

)
C55

(
Us

1,3 + Us
3,1

)
C33U

s
3,3 + C13U

s
1,1

]
:[

Ur
1,1 Ur

3,1

Ur
1,3 Ur

3,3

]
, (B.1)

where Us,r
i,j is the j-th derivative of the ith-component of

wavefield Us or Ur , and Cij are the stiffness coefficients in
Voigt notation. The symbol : represents Frobenius product be-
tween two matrices: an element-wise product between matri-
ces with the corresponding sum of the products resulting in a
scalar. Indices i, j = {1, 2, 3} refer to {x, y, z}. The super-
script dot on Us,r

i indicates time differentiation. Rewriting all

derivatives applied to Ur as operators, we obtain

IE =ρ
[
U̇s

1 U̇s
3

][Dt 0
0 Dt

][
Ur

1

Ur
3

]
−[

C11U
s
1,1 + C13U

s
3,3 C55

(
Us

1,3 + Us
3,1

)
C55

(
Us

1,3 + Us
3,1

)
C33U

s
3,3 + C13U

s
1,1

]
:[

D1 0
0 D3

][
Ur

1 Ur
3

Ur
1 Ur

3

]
, (B.2)

where Dt, D1, and D3 indicate derivative operators in time,
x, and z, respectively. Therefore, the application of the energy
imaging condition can be considered as an operator acting on
the receiver wavefield [Ur

1 U
r
3 ]. Its adjoint operator (linearized

modeling) acts on the image (or reflectivity) IE :

[f1 f3] =

[[
DT

t 0
0 DT

t

] [
U̇s

1

U̇s
3

]
ρIE

]T

−
[
DT

1 DT
3

]
[
C11U

s
1,1 + C13U

s
3,3 C55

(
Us

1,3 + Us
3,1

)
C55

(
Us

1,3 + Us
3,1

)
C33U

s
3,3 + C13U

s
1,1

]
IE , (B.3)

where [f1 f3] is a two-component virtual source that generates
the scattered wavefield [Ur

1 U
r
3 ]. We can rewrite the expres-

sion for each component individually for such virtual source:

f1(x, t) = DT
t ρDtU

s
1 IE − (B.4)

DT
1 [C11D1U

s
1 + C13D3U

s
3 ] IE −

DT
3 [C55 (D3U

s
1 +D1U

s
3 )] IE ,

f3(x, t) = DT
t ρDtU

s
3 IE − (B.5)

DT
1 [C55 (D3U

s
1 +D1U

s
3 )] IE −

DT
3 [C33D3U

s
3 + C13D1U

s
1 ] IE .

Therefore, we can consider the generation of the energy
scattered wavefield in an elastic 2D VTI medium as the extrap-
olation of a virtual multicomponent source defined by equa-
tions B.4 and B.5.


