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ABSTRACT
Standard model-based redatuming techniques consist in applying time shifts to
the surface data, to simulate an acquisition made at depth. The time shifts are
computed using prior knowledge of the overburden, such as a macro velocity
model. These techniques allow focusing of the direct waves at the new datum,
but the focus can be degraded because of surface multiples and internal mul-
tiples in the overburden. We show that if the medium above the redatuming
level is known, these multiples can be removed. We compute exact focusing
functions, free of multiples, using an inverse-filter approach. These focusing
functions create downgoing and upgoing virtual sources at the new datum. The
surface responses to these virtual sources are then used to compute the objective
redatumed data set through multi-dimensional deconvolution. The redatumed
data set corresponds to a virtual acquisition made at the new datum and for
which the imprint of the overburden is completely removed. We demonstrate
the technique on 2D acoustic synthetic examples corresponding to a seismic
context and an acoustic nondestructive testing context.
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1 INTRODUCTION

Redatuming seismic data consists in virtually moving
the sources and receivers from the original acquisition
level to a new depth level, also called new datum. This
process can be employed when the original acquisition
grid is inadequate for imaging purposes, as in cases of
rugged topography, irregular spatial sampling, remote-
ness from target, etc.

When buried sensors are available at the new da-
tum (e.g., in a deviated well), creating virtual sources
can be achieved based on the data only, without any
prior knowledge of the medium. Processing techniques
have been developed for this purpose and fall into the
category of correlation-based redatuming Schuster and
Zhou (2006).

When buried sensors are not available, model-based
redatuming relies on applying corrections to the original
data set based on some prior knowledge of the overbur-
den - i.e., some knowledge of the medium parameters
between the original and the new datum. The standard
approach consists in modeling the propagation of the di-

rect waves between the surface and the positions of the
virtual sources/receivers, and in applying corresponding
time shifts to the data Berryhill (1979); Shtivelman and
Canning (1988). This approach only requires a macro
velocity model of the overburden as prior information.

The standard model-based redatuming methods
can successfully focus the direct waves at the new da-
tum but do not account for surface multiples and in-
ternal multiples in the overburden. These multiples can
generate ghost arrivals in the redatumed data set and
thus ghost reflectors in the subsequent images.

In the field of acoustics, a similar problematic of
imperfect focusing led to the development of the spatio-
temporal inverse-filter technique Tanter et al. (2001).
With a single-sided source distribution, this technique
aims to focus acoustic wavefields beyond complicated
layers for medical imaging and nondestructive testing
purposes Aubry et al. (2001). It requires the acquisi-
tion of a baseline data set, for which the “overburden”
is extracted from the rest of the medium. With sources
on one side and receivers on the other side of the over-
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Figure 1. (a) Full medium with free surface, overburden, and target area. (b) Objective medium with target area below the
new datum z = z1 and homogeneous above. (c) Priorly known upper medium with free surface, overburden, and homogeneous

below the new datum z = z1. The (virtual) sources and receivers are denoted by the black crosses.

burden, a transmission matrix is acquired and focusing
functions are built through an inversion procedure.

In a seismic context, a physical acquisition of such
a baseline is not possible. However, if one has a good
knowledge of the medium parameters in the overburden,
the transmission matrix can be computed numerically.
This is the approach that we use here to compute focus-
ing functions that give rise to upgoing and downgoing
virtual sources at the new datum.

Note that the Marchenko imaging procedure aims
to iteratively infer these same focusing functions, only
using a macro velocity model and reflected waves
recorded at the surface as prior information Wapenaar
et al. (2013); Broggini et al. (2014). The method we pro-
pose here thus requires more prior information than the
Marchenko method but can provide in turn a simpler,
more direct way to compute these focusing functions.

Once the responses to the upgoing and downgoing
virtual sources are known, the imprint of the overbur-
den can be fully removed through multi-dimensional de-
convolution Schuster and Zhou (2006); Wapenaar et al.
(2008); Wapenaar and van der Neut (2010). Our work is
related to the “rigorous redatuming” method developed
by Mulder (2005), that requires similar assumptions and
aims at the same objective. However, we follow a differ-
ent approach and our formalism involves one less inver-
sion step in the redatuming procedure.

The formal derivation of the redatuming equations,
based on Rayleigh’s reciprocity theorem, is presented in
the appendix. In the main text, we provide a heuristic
graphics-based derivation that relies on a matrix for-
malism. We then demonstrate the method on two syn-
thetic data sets: one corresponding to a seismic context;
and the other one corresponding to an acoustic nonde-
structive testing context. In both cases, we successfully
retrieve redatumed Green’s functions for which the im-
print of the overburden is removed.

2 THEORY

We consider a 2D acoustic medium with variable den-
sity ρ(r) and compression modulus κ(r). The frequency-
domain wave equation for the pressure p(r, ω) reads

ρ(r)∇.

[
1

ρ(r)
∇p(r, ω)

]
+

ω2

c2(r)
p(r, ω) = f(r, ω) , (1)

where ω is the angular frequency, c(r) =
√
κ/ρ is the

medium velocity and f(r, ω) an arbitrary source term.
We define the Green’s function g(r, rs, ω) as the solu-
tion of this wave equation for a monopole Dirac source
term at rs, i.e.,

∇.

[
1

ρ(r)
∇g(r, rs)

]
+

ω2

κ(r)
g(r, rs) = δ(r − rs) , (2)

where the frequency dependency of the Green’s func-
tions is made implicit from now on. Note that the den-
sity has been included in the source term, so that the
Green’s function is the solution of the wave equation
(equation 1) with a source term f(r, ω) = ρ(r)δ(r−rs).
In the absence of horizontally propagating waves, the
Green’s function can be decomposed at the receiver level
into an upgoing part and a downgoing part as

g(r, rs) = g+,p(r, rs) + g−,p(r, rs) , (3)

where g+,p(r, rs) represents the downgoing pressure
wavefield at r (superscript +) for an impulse pressure
source at rs (superscript p) and where g−,p(r, rs) rep-
resents the upgoing pressure wavefield at r (superscript
−) for an impulse pressure source at rs (superscript p).
The Green’s functions can also be decomposed at the
source level as

g(r, rs) = gp,+(r, rs) + gp,−(r, rs) , (4)

where gp,+(r, rs) represents the full pressure wavefield
at r (superscript p) for a downgoing pressure source at
rs (superscript +) and where gp,−(r, rs) represents the
full pressure wavefield at r (superscript p) for an upgo-
ing pressure source at rs (superscript−). By reciprocity,



Model-based redatuming of seismic data 3

G+ 

G- 

R
1

L

 

R
 

RU

 TU

 

T
1

U

 

R
1

U

 

Figure 2. Graphical representation of the Green’s function matrices used in the redatuming procedure.

we have

g(r, rs) = g(rs, r) ,

g+,p(r, rs) = gp,−(rs, r) ,

g−,p(r, rs) = gp,+(rs, r) . (5)

We consider N sources and N receivers at coinci-
dent locations just below the free surface, and whose po-
sitions are described by the coordinate x0 (Figure 1(a)).
We define the N × N reflection matrix R of the full
medium as Rij = g(x0i , x

0
j , ω). It contains the responses

from each source position x0j to each receiver position
x0i and corresponds to a reflection data set acquired at
the free surface.

Our objective is to transform the initial reflection
data set R into a virtual reflection data set RL

1 , cor-
responding to virtual sources and receivers located at
depth z1 and for which the imprint of the overbur-
den (medium above z1) is completely removed. This
amounts to retrieving the N×N reflection matrix RL

1 of
the objective medium represented in Figure 1(b), that
is homogeneous above the new datum z1. The super-
script L denotes quantities corresponding to this ob-
jective (or lower) medium, and we define {RL

1}ij =
−(4(∆x)2/ρ(x1i )ρ(x1j ))∂zg

L(x1i , x
1
j , ω). The positions of

the N virtual sources and receivers at depth z1 (the new
datum) are described by the coordinate x1, and ∆x is
the spatial pitch of these virtual sensors.

The formal derivation of the redatuming procedure
is based on Rayleigh’s reciprocity theorem and is pre-
sented in Appendices A and B. The formulation of the
redatuming equations into simple matrix relations ex-
plains the peculiar definition of matrix RL

1 . In the fol-
lowing, we propose a heuristic, graphics-based illustra-

tion of these redatuming equations. The matrices R and
RL

1 are schematized in Figure 2.
We define G+ (resp. G−) as Green’s function ma-

trices in the full medium (Figure 1(a)) for downgoing
(resp. upgoing) sources located at depth z1, so that
{G+}ij = (2∆x/ρ(x1j ))g

p,+(x0i , x
1
j , ω) and {G−}ij =

gp,−(x0i , x
1
j , ω). These matrices are also schematized in

Figure 2. If G+ and G− are known, then the reflection
matrix RL

1 can be obtained from the relation

G+ = G−RL
1 . (6)

This relation is graphically illustrated in Figure 3(a).
Because the objective medium is homogeneous above
depth z1 (Figure 1(b)), RL

1 represents the upgoing wave-
field response at z1 to a downgoing source wavefield at
z1. If these upgoing wavefields are convolved with the
upgoing source Green’s function matrix G−, the result-
ing wavefield recorded at the free surface is equivalent
to the downgoing source Green’s function matrix G+.

Note that by virtue of source-receiver reciprocity,
knowing G+ and G− is equivalent to measuring upgoing
and downgoing wavefields at the new datum, as in a de-
viated well configuration. Solving for RL

1 in equation 6
then amounts to a discretized form of multi-dimensional
deconvolution Schuster and Zhou (2006); Wapenaar and
van der Neut (2010).

Because we do not suppose the physical presence
of receivers at depth, we numerically compute G+ and
G− using the surface-acquired data set R and our
prior knowledge of the overburden (between z = 0 and
z = z1). First, we perform numerical simulations in the
upper medium depicted in Figure 1(c), that has a free
surface at z = 0 and that is homogeneous below z = z1.
This gives the N × N reflection and transmission ma-
trices RU, RU

1 , TU and TU
1 , where the superscript U
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Figure 3. Graphical representation of (a) equation 6, (b) equation 9, and (c) equation 11. To follow the graphics from source
to receiver, the matrix products are to be read from right to left .

indicates quantities calculated in this upper medium.
These matrices are defined as {RU}ij = gU(x0i , x

0
j , ω),

{RU
1 }ij = ∂zg

U(x1i , x
1
j , ω), {TU}ij = ∂zg

U(x1i , x
0
j , ω),

{TU
1 }ij = gU(x0i , x

1
j , ω). They are graphically repre-

sented in Figure 2.
To compute G+, we then have to build focusing

source functions that, when sent from the free surface,
collapse into downgoing Dirac impulses at the new da-
tum. Assuming that these focusing functions exist, they
can be gathered in the matrix F+ so that

TUF+ = I , (7)

and because the focusing functions are reflected in the
upper medium,

RUF+ = F− . (8)

The identity matrix I defines a set of objective Dirac im-
pulses at each position on the new datum. Causality and

medium homogeneity below z1 insures that these are
downgoing impulses. By definition, F− represents the
surface response of the focusing functions in the upper
medium. The idea of computing the focusing functions
F+ by finding the inverse of the transmission matrix TU

is at the center of the spatio-temporal inverse-filter tech-
nique developed in acoustics Tanter et al. (2001); Aubry
et al. (2001). When the transmission matrix of the over-
burden is not known, it is possible to compute the fo-
cusing functions F+ and F− using an iterative scheme
based on a variant of equation 8 and its time-reversed
version. This forms the basis of the Marchenko imaging
procedure Rose (2002); Wapenaar et al. (2013), that
relies on the reflection response from the surface and
a macro velocity model of the overburden as the only
prior knowledge. In contrast, the work presented here
relies on a much stronger assumption - i.e. the knowl-
edge of the upper medium parameters - but allows in
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turn a more direct way to compute F+ and F− based
on the inversion of TU.

By injecting the focusing functions F+ in the full
medium (Figure 1(a)), we obtain

RF+ = F− + G+ , (9)

where G+ is the Green’s function matrix in the full
medium for downgoing sources at depth z1. Equation 9
is graphically illustrated in Figure 3(b). The Green’s
functions G+ emerge as the focusing wavefields cre-
ate virtual downgoing sources at depth z1 in the full
medium. By replacing the expressions of the focusing
functions F+ and F− (equations 7&8) into equation 9,
we obtain

G+ =
[
R−RU

] [
TU
]−1

. (10)

The matrix G−, that contains the responses to up-
going sources at z1, can be expressed using G+ as well as
the matrices RU

1 and TU
1 obtained in the upper medium

according to

G− = TU
1 + G+RU

1 . (11)

This relation is illustrated in Figure 3(c). Equation 11 is
a decomposition of G− into the portion of the wavefield
that only travels in the upper medium TU

1 , and the
portion of the wavefield that travels into the full medium
G+RU

1 .
We finally replace these expressions of the Green’s

function matrices G+ and G− into equation 6, to com-
pute the objective virtual data set RL

1 as

RL
1 =

[
G−

]−1
G+

=
[
TU

1 + G+RU
1

]−1 [
R−RU

] [
TU
]−1

=

[
TU

[
R−RU

]−1

TU
1 + RU

1

]−1

(12)

As intended, this expression of the objective reflection
matrix RL

1 (or redatumed data set) is a function only of
the initial surface data set R and of the matrices RU,
RU

1 , TU and TU
1 . Note that RU, RU

1 , TU and TU
1

depend only on the prior knowledge of the overburden.

3 NUMERICAL EXAMPLES

3.1 Seismic data set

To illustrate the method, we generate a synthetic seis-
mic data set with 2D acoustic numerical simulations. We
use the software developed by Thorbecke and Draganov
(2011), based on a finite-difference scheme. The veloc-
ity model of the full medium is presented in Figure 6(a)
and is 2000 m wide by 2000 m deep. It consists of three
homogeneous layers separated by two non-horizontal
boundaries, whose velocities are 1600 m/s, 2200 m/s
and 2800 m/s, and whose densities are 1000 kg/m3, 2000
kg/m3 and 3000 kg/m3.

The new datum is located below the first two lay-
ers at depth z = 1000 m. Two circular inclusions with
vanishing velocity and of diameters 80 m and 160 m are
placed in the homogeneous third layer, below the new
datum, and represent targets to be detected. We have
free-surface boundary conditions at the upper boundary
and absorbing conditions at the other boundaries.

The initial reflection data set R is generated using
N = 126 sources and receivers located a quarter wave-
length below the free surface, corresponding to a sensor
spacing of 16 m. The monopole (explosive) sources are
modeled with a Ricker wavelet of central frequency 25
Hz. The spatial step of the grid is 4 m and the temporal
step is 0.8 ms. An example of a common-source gather
shows primary and multiple scattering events from both
the overburden and the two targets (Figure 6(b)). The
primary scattering events from the targets, partially
screened by overburden multiples, arrive at 1.6 s and
1.9 s at x = 0 m.

The redatuming procedure starts with simulations
in the upper medium, that corresponds to our prior
knowledge of the overburden (Figure 4(a)). We place
N = 126 sources and receivers at the free surface and
another N = 126 sources and receivers at the new da-
tum. This allows us to calculate the reflection and trans-
mission matrices RU, RU

1 , TU and TU
1 .

We compute the focusing functions F+ =
[
TU
]−1

(see equation 7) using a Singular Value Decomposition
(SVD) of TU. We then construct the downgoing and up-
going Green’s function matrices G+ and G− following
equations 10 and 11. Finally, we compute the objective
redatumed data set RL

1 following equation 12. The in-
verse of G− is obtained using another SVD.

An example of a common-source gather from the
redatumed data set is shown in Figure 5(a). The two
dominant events correspond to primary scattering on
the two targets and the two following events correspond
to target multiples. As intended, the redatumed data
set corresponds to a virtual acquisition made at depth
z = 1000 m, and for which the imprint of the overburden
is completely removed.

For comparison, a synthetic version of the objec-
tive data set is shown in Figure 5(b). This synthetic
data set is obtained from a numerical simulation per-
formed in the objective medium shown in Figure 4(b).
We also present a comparison of three individual traces
from the redatumed and synthetic data sets correspond-
ing to three different receiver offsets (Figure 7).

The two primaries and first two multiples are ob-
served in both the redatumed and the synthetic data
set. The difference in shape and amplitude of the events
at large offset is caused by the limited aperture of the
surface array. Some weak acausal events are present in
the redatumed data set. These events are again related
to the finite aperture of the surface array, and are caused
by the diffraction of the focusing function emitted at the
edges of the array. This effect could possibly be atten-
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Figure 4. (a) Upper medium with free surface, overburden and homogeneous conditions below the new datum z = 1000 m.

(b) Objective medium with two targets below the new datum z = 1000 m and homogeneous conditions above. A subpart of the

(virtual) sources and receivers are denoted by the black crosses.

x(m)

t(
s
)

0 500 1000 1500 2000

0

0.5

1

1.5

2

2.5

(a)

x(m)

t(
s
)

0 500 1000 1500 2000

0

0.5

1

1.5

2

2.5

(b)

Figure 5. Common-source gather from: (a) the redatumed seismic data set RL
1 and (b) a synthetic numerical simulation in

the objective medium. The (virtual) source is located at position x = 992 m along the new datum.

uated by using spatial tapering techniques during the
inversion of the focusing function. The attenuation of
these artifacts, also expected to occur in standard reda-
tuming techniques, is beyond the scope of this study.

3.2 Acoustic data set

We generate another synthetic data set with 2D acous-
tic numerical simulations. This time, we use free-surface
side boundaries to simulate a typical configuration en-
countered in acoustic nondestructive testing of mate-
rials. We use a custom made acoustic finite-difference
scheme with constant density. We use the same velocity

model, downsized to 1 m wide by 1 m deep (Figure 8(a)).
The new datum is now located at depth z = 50 cm and
the two circular targets are of diameter 4 cm and 8 cm.

The initial reflection data set R is generated using
N = 125 sources and receivers located one grid-point
(0.5 mm) below the free surface, corresponding to a sen-
sor spacing of 0.8 cm. The monopole (explosive) sources
are modeled with a Ricker wavelet of central frequency
50 kHz. The spatial step of the grid is 0.5 mm and the
temporal step is 0.11 µs. An example of a common-
source gather shows primary and multiple scattering
events from the overburden, the two targets and the
side boundaries (Figure 8(b)). The primary scattering
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Figure 6. (a) Full seismic medium including the free surface, the overburden, and the two targets. A subpart of the sources

and receivers are denoted by the black crosses. (b) Common-source gather for a source at x = 992 m.
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Figure 7. Comparison of redatumed and synthetic seismic traces at three different receiver offsets, x = 656 m, x = 992 m and
x = 1328 m. The (virtual) source is located at position x = 992 m along the new datum.

events from the targets, partially screened by overbur-
den multiples and side reflections, arrive at 1 ms and
1.2 ms at x = 0 cm.

We follow the procedure detailed in the previous
section to compute the objective redatumed data set
RL

1 . An example of a common-source gather from the
redatumed data set is shown in Figure 9(a). The two
dominant events correspond to primary scattering on
the two targets and the following events correspond to
target and side-boundary multiples. As intended, the
redatumed data set corresponds to a virtual acquisition
made at depth z = 50 cm, and for which the imprint
of the overburden is completely removed. For compar-

ison, a synthetic version of the objective data set is
shown in Figure 9(b). We also present a comparison
of three individual traces from the redatumed and syn-
thetic data sets corresponding to three different receiver
offsets (Figure 10).

A good agreement is observed between the reda-
tumed and the synthetic data set. In contrast with the
absorbing-side-boundaries case, the differences in shape
and amplitude of the events at large offset are much
less pronounced. The acausal events due to diffraction
of the focusing function at the edges of the surface array
are also less noticeable. The presence of the reflective
boundaries increase the effective aperture of the surface
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Figure 8. (a) Full acoustic medium including the free surface at the top and side boundaries, the overburden, and the two
targets. A subpart of the sources and receivers are denoted by the black crosses. (b) Common-source gather with source at

position x = 50 cm.
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Figure 9. Common-source gather from: (a) the redatumed acoustic data set RL
1 and (b) a synthetic numerical simulation in

the objective medium. The (virtual) source is located at position x = 50 cm along the new datum.

array and thus improves the reconstruction of the reda-
tumed data set.

4 CONCLUSION

We introduced a model-based redatuming technique
that correctly handles surface multiples and internal
multiples in the overburden. The technique relies on the
assumption that a detailed knowledge of the model pa-
rameters is available above the new datum.

In addition to a formal derivation of the redatum-
ing equations, we presented an intuitive graphics-based
derivation supported by a matrix formalism. The reda-
tuming procedure can be summarized as follows:

(i) Use numerical simulations to compute reflection
and transmission matrices of the overburden.

(ii) Through an inversion step, retrieve the focusing
functions that give rise to downgoing virtual sources at
the new datum.

(iii) Using the initial data set and the simulated
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Figure 10. Comparison of redatumed and synthetic acoustic traces at three different receiver offsets, x = 33 cm, x = 50 cm

and x = 66 cm. The (virtual) source is located at position x = 50 cm along the new datum.

overburden matrices, compute the surface responses to
downgoing and upgoing virtual sources at the new da-
tum.

(iv) Use the reponses to these virtual sources to eval-
uate the redatumed data set through multi-dimensional
deconvolution.

The redatumed data set corresponds to a virtual reflec-
tion response acquired at the new datum, and for which
the imprint of the overburden is completely removed.

We demonstrated the procedure on two synthetic
data sets generated in 2D acoustic media. The first
medium had absorbing side boundaries to simulate a
seismic data set while the other medium had free-surface
side boundaries to simulate an acoustic nondestructive
testing data set. In both cases, the redatuming proce-
dure successfully allowed to retrieve primary and mul-
tiple scattering events from targets located below the
overburden. The absence of surface multiples and inter-
nal multiple showed that the imprint of the overburden
was fully removed. The redatumed seismic data set suf-
fered from finite-aperture effects of the surface array, as
it can be expected from any other standard redatum-
ing procedure. The redatumed acoustic data set did not
suffer these limitations as the side boundaries artificially
increased the effective aperture of the surface array.

This technique requires a stronger prior knowledge
than the Marchenko imaging procedure to compute the
focusing functions. However, it can provide a simpler
and more direct way to perform the redatuming in cases
where a good knowledge of the overburden is available.
Indeed, the interest of the technique lies in the fact that
the inversion of the transmission matrix automatically
generates a focus free of multiples and compensates for
effects such as attenuation, irregular topography and
irregular spatial sampling.

The extrapolation of the method to 3D acous-
tic data should be straightforward; however, the ap-
plication to elastic data should be carefully tested.

Based on recent progresses in elastic Marchenko imag-
ing da Costa Filho et al. (2014); Wapenaar (2014), we
believe that elastic redatuming could also be achieved.
The limitation in the elastic case would probably come
from the ability to have a detailed knowledge of much
more model parameters.
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A RECIPROCITY THEOREMS

Consider two independent wave states A and B, de-
fined by medium parameters (ρA, κA) and (ρB , κB) and
source terms fA and fB . If inside a volume V enclosed
by a surface S, the medium parameters are the same for
state A and state B, a special case of Rayleigh’s reci-
procity theorem Wapenaar and Berkhout (1989) gives∮
S

1

ρ
[pA∇pB − pB∇pA] .dS =

∫
V

1

ρ
[pAfB − pBfA] dV .

(13)
This relation is valid for arbitrary and independent
source terms fA and fB . The medium parameters out-
side the integration volume V can also be different for
states A and B. By choosing fB = ρ(r)δ(r − r0) and
fA = 0, we obtain the special case known as the repre-

sentation theorem

p(r0) =

∮
S

1

ρ
[p(r)∇g(r, r0)− g(r, r0)∇p(r)] · dS .

(14)

A.1 Case with a free surface

Consider a volume V enclosed by a surface S composed
of a free surface and a virtual horizontal boundary S1 at
an arbitrary depth, as represented in Figure 11(a). The
coordinate x1 denotes the horizontal position along the
boundary S1 and z is the depth coordinate. Because the
pressure vanishes at the free surface, and because the
boundary S1 is orthogonal to the z axis, the reciprocity
theorem (equation 13) simplifies to∫

S1

1

ρ(x1)

[
pA(x1)∂zpB(x1)− pB(x1)∂zpA(x1)

]
dx1

=
∫
V

1

ρ
[pAfB − pBfA] dV .

(15)
This also supposes that the depth of S1 is much smaller
than the medium width, so that the side contributions
to the surface integral can be neglected. By decomposing
pA and pB as upgoing and downgoing wavefields at S1,
the left-hand side of equation 15 can be expanded into
the four following terms:∫

S1

1

ρ(x1)

[
p+A∂zp

−
B + p−A∂zp

+
B

]
dx1

−
∫
S1

1

ρ(x1)

[
p+B∂zp

−
A + p−B∂zp

+
A

]
dx1

+
∫
S1

1

ρ(x1)

[
p+A∂zp

+
B + p−A∂zp

−
B

]
dx1

−
∫
S1

1

ρ(x1)

[
p+B∂zp

+
A + p−B∂zp

−
A

]
dx1 .

(16)

Assuming that there are no reflector crossing the
boundary S1, i.e., ∂zρ(x1)=0 and ∂zκ(x1)=0, the up-
going and downgoing wavefields are locally decoupled.
Using the one-way wave equation at S1, it can be shown
that the first and second terms of expression 16 are equal
to each other, and that the third and fourth terms can-
cel each other out Wapenaar and Berkhout (1989). The
reciprocity theorem can thus be written as∫

S1

2
ρ(x1)

[
p+A(x1)∂zp

−
B(x1) + p−A(x1)∂zp

+
B(x1)

]
dx1

=
∫
V

1

ρ
[pAfB − pBfA] dV .

(17)
This special form of the reciprocity theorem is used in
the next section to derive equations 10 and 11 of the
redatuming technique. We also use equation 17 to de-
rive an identity that is used in the following. For wave
state A, let us consider the case of an impulsive source
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Figure 11. Schematic representation of the integration volumes for the derivation of the reciprocity theorems with a free surface
(a), and without a free surface (b).

fA = ρδ(x1 − x1i ) at a distance ε → 0 above x1i . For
wave state B, an impulsive source fB = ρδ(x1 − x1j ) is
located at a distance ε→ 0 below x1j . Assuming that the
medium is homogeneous outside the volume V , equa-
tion 17 simplifies to∫

S1

2

ρ(x1)
pA(x1)∂zp

−
B(x1)dx1 = −pB(x1i ) , (18)

where we note that p−A(x1) = 0 and thus pA(x1) =
p+A(x1). We also used the fact that fB = 0 in the in-
tegration volume V . As epsilon goes to zero, the wave
states A and B become symmetrically equivalent and
we have pA(x1j ) = pB(x1i ). We then deduce from equa-
tion 18 the identity

∂zp
−
B(x1) = −ρ(x1)

2
δ(x1 − x1j ) . (19)

This expression describes the vertical derivative of the
upgoing pressure field just above an impulsive source.

A.2 Case without a free surface

Consider now a volume V enclosed by a surface S com-
posed of two virtual horizontal boundaries S1 and S2,
as represented in Figure 11(b). The coordinate x1 (resp.
x2) denotes the horizontal position along the boundary
S1 (resp. S2) and z is the depth coordinate. Because the
surface S enclosing the volume V does not include a free
surface, the surface integral needs to be expressed at S1

and S2. We further assume that there are no sources in

the volume V , so that the reciprocity theorem (equa-
tion 13) simplifies to∫

S1

1

ρ(x1)

[
pA(x1)∂zpB(x1)− pB(x1)∂zpA(x1)

]
dx1

=
∫
S2

1

ρ(x2)

[
pA(x2)∂zpB(x2)− pB(x2)∂zpA(x2)

]
dx2 .

(20)
Similarly to the previous case, we use the upgoing and
downgoing wavefield decomposition at boundaries S1

and S2. Assuming that there are no reflectors crossing
S1 and S2, we obtain the one-way reciprocity theorem
of the convolution type Wapenaar et al. (2014):∫

S1

1

ρ(x1)

[
p+A(x1)∂zp

−
B(x1) + p−A(x1)∂zp

+
B(x1)

]
dx1

=
∫
S2

1

ρ(x2)

[
p+A(x2)∂zp

−
B(x2) + p−A(x2)∂zp

+
B(x2)

]
dx2 ; .

(21)
This relation is used in the next section to derive equa-
tion 6 of the redatuming technique.

B DERIVATION OF THE REDATUMING
EQUATIONS

B.1 Definition of the different wave states

We define four different wave states that are used with
the reciprocity theorems to derive the redatuming equa-
tions (Figure 12). The full medium is represented in
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Figure 12. Illustration of wave states A, B, C and D used in the reciprocity theorems for the derivation of the redatuming
equations.

state A, with an irregular free surface. The original re-
flection data acquisition is made along the boundary
S0 at an arbitrary depth below the free surface. The
boundary S0 can be curvilinear, and the acquisition spa-
tial interval can be irregular. The positions of sources
and receivers along the boundary S0 are denoted by the
coordinate x0. The new datum boundary S1 is located
below the overburden and is set to be horizontal. The
positions along the new datum are denoted by the co-
ordinate x1 and the spatial interval ∆x is chosen to be
constant. The target area lies below the new datum S1.

For an impulse pressure source located at posi-
tion x0i , the reflection response R(x0, x0i ) is the pres-
sure recorded along x0. We also define the downgo-
ing (resp. upgoing) wavefield at x1 g+,p(x1, x0i ) (resp.
g−,p(x1, x0i )). By reciprocity (equation 5), these are
equal to the pressure response at x0i for an upgoing
(resp. downgoing) impulse source at x1 gp,−(x0i , x

1)
(resp. gp,+(x0i , x

1)). These last two functions are the
ones that we aim to determine to achieve the redatum-
ing. In summary, we have

fA = ρδ(x0 − x0i ) ,

pA(x0) = g(x0, x0i ) = R(x0, x0i ) ,

p+A(x1) = g+,p(x1, x0i ) = gp,−(x0i , x
1) ,

p−A(x1) = g−,p(x1, x0i ) = gp,+(x0i , x
1) . (22)

Wave states B and C take place in the upper
medium, that represents the overburden and that ex-
tends from the free surface to the new datum S1. The
medium below the new datum is homogeneous. We run

two different simulation sets in this upper medium.
For wave state B, an impulse pressure source is placed
at x0j and the reflection response RU (x0, x0j ) from S0

to S0 is recorded along x0. The transmission response
TU (x1, x0j ) from S0 to S1 is also recorded. We have

fB = ρδ(x0 − x0j ) ,

pB(x0) = gU (x0, x0j ) = RU (x0, x0j ) ,

∂zp
+
B(x1) = ∂zg

U|+,p(x1, x0j ) = ∂zT
U (x1, x0j ) ,

∂zp
−
B(x1) = ∂zg

U|−,p(x1, x0j ) = 0 . (23)

where the superscript U denotes quantities computed
in the upper medium. For wave state C, an im-
pulse pressure source is placed at x1k and the reflec-
tion response from S1 to S1 in the upper medium
RU1 (x1, x1k) is recorded along x1. The transmission re-
sponse TU1 (x0, x1k) from S1 to S0 is also recorded. We
have

fC = ρδ(x1 − x1k) ,

pC(x0) = gU (x0, x1k) = TU1 (x0, x1k) ,

∂zp
+
C(x1) = ∂zg

U (x1, x1k) = ∂zR
U
1 (x1, x1k) ,

∂zp
−
C(x1) = −ρδ(x1 − x1k)/2 . (24)

where the source is located at a distance ε → 0 below
S1. The expression of ∂zp

−
C was derived in the previous

section (equation 19). We note that in order to only re-
tain downgoing energy in p+C , we remove the direct wave
that propagates quasi-horizontally from RU1 (x1, x1k).

Wave state D takes place in the objective medium,
that represents the target area below the new datum S1.
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The medium above the new datum is homogeneous. The
redatumed or objective data set corresponds to an ac-
quisition made along S1. For an impulse pressure source
at x1l , the pressure wavefield measured at x1 forms the
reflection response RL1 (x1, x1l ). We have

fD = ρδ(x1 − x1l ) ,

∂zp
+
D(x1) = ρδ(x1 − x1l )/2 ,

∂zp
−
D(x1) = ∂zg

L(x1, x1l ) = ∂zR
L
1 (x1, x1l ) . (25)

where the superscript L denotes quantities related to the
objective (or lower) medium. The source is located at a
distance ε→ 0 above S1. By antisymmetry with respect
to the z-axis, we have ∂zp

+
D(x1)=−∂zp−C(x1). Because

p−D(x1) only describe upgoing wavefields, we expect the
direct wave to be absent from RL1 (x1, x1l ).

B.2 Derivation of the downgoing source
Green’s function matrix G+

This matrix represents the surface response at S0 for a
virtual downgoing source at the new datum S1. We ap-
ply the reciprocity theorem (equation 17) to wave states
A and B, to obtain∫

S1

2

ρ(x1)
gp,+(x0i , x

1)∂zT
U (x1, x0j )dx

1

= R(x0i , x
0
j )−RU (x0i , x

0
j ) ,

(26)

using the reciprocity relation R(x0i , x
0
j ) = R(x0j , x

0
i ). A

discretized version of this equation can be written as
the matrix relation

G+TU = R−RU , (27)

where the matrices R, RU, TU and G+ are defined as

{R}ij = R(x0i , x
0
j ) ,

{RU}ij = RU (x0i , x
0
j ) ,

{TU}ij = ∂zT
U (x1i , x

0
j ) ,

{G+}ij = 2∆xgp,+(x0i , x
1
j )/ρ(x1j ) . (28)

B.3 Derivation of the upgoing source Green’s
function matrix G−

This matrix represents the surface response at S0 for a
virtual upgoing source at the new datum S1. We apply
the reciprocity theorem (equation 17) to wave states A
and C, to obtain

−gp,−(x0i , x
1
k) +

∫
S1

2

ρ(x1)
gp,+(x0i , x

1)∂zR
U
1 (x1, x1k)dx1

= −TU1 (x0i , x
1
k) ,

(29)
using the fact that fC = 0 in the integration volume V .
A discretized version of this equation can be written as
the matrix relation

G− = TU
1 + G+RU

1 , (30)

where the matrices RU
1 , TU

1 and G− are defined as

{RU
1 }ij = ∂zR

U
1 (x1i , x

1
j ) ,

{TU
1 }ij = TU1 (x0i , x

1
j ) ,

{G−}ij = gp,−(x0i , x
1
j ) . (31)

B.4 Derivation of the redatumed reflection
response RL

1

This matrix contains the redatumed data set that sim-
ulates an acquisition made at S1 and for which the im-
print of the overburden is completely removed. We apply
the one-way reciprocity theorem (equation 21) to wave
states A and D, and choose a virtual boundary S2 to
be below the deepest reflector of the target area. Be-
cause there is no upgoing energy at this boundary, the
one-way reciprocity theorem (equation 21) simplifies to∫
S1

1

ρ(x1)

[
p+A(x1)∂zp

−
D(x1) + p−A(x1)∂zp

+
D(x1)

]
dx1 = 0 .

(32)
We replace the expressions of ∂zp

+
D, ∂zp

−
D, p+A and p−A,

to obtain∫
S1

1

ρ(x1)
gp,−(x0i , x

1)∂zR
L
1 (x1, x1l )dx1 = −1

2
gp,+(x0i , x

1
l ) .

(33)
A discretized version of this equation can be written as
the matrix relation

G+ = G−RL
1 , (34)

where the matrix RL
1 is defined as

{RL
1}ij = −4(∆x)2

∂zR
L
1 (x1i , x

1
j )

ρ(x1i )ρ(x1j )
. (35)
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